Меню

Однородность вселенной больших масштабах

Глава 1. Расширяющаяся Вселенная

§ 1. Крупномасштабная однородность и изотропия Вселенной

Любые попытки построения модели окружающего нас мира начинаются, конечно, с осмысливания наблюдений.

Что представляет собой наблюдаемая нами Вселенная?

В этом вводном параграфе мы ограничимся только самыми общими выводами из наблюдений, необходимыми для понимания дальнейшего. Более подробно с данными наблюдений мы познакомимся далее в § 8, 9 гл. 1.

До последнего времени астрономы могли наблюдать непосредственно лишь светящиеся тела, т. е. звезды, светящийся газ, звездные системы.

В сравнительно небольших масштабах звезды распределены в пространстве совершенно неравномерно. Это стало ясно с того времени, когда поняли, что Млечный Путь является гигантским скоплением звезд — Галактикой. По мере того, как сила телескопов возрастала и совершенствовались методы астрофизических исследований, выяснилось, что галактик много, что они распределены неравномерно, и что общая картина Вселенной представляется совокупностью отдельных скоплений галактик. Размеры скоплений и количество галактик в них бывают весьма различны. Большие скопления содержат тысячи галактик и имеют размеры в несколько мегапарсек (Мnс) * .

* ( В астрономии используется единица длины парсек (): 1 парсек = 3,1*10 18 см. В космологии употребляется единица длины Мегапарсек, равная 10 6 .)

Среднее расстояние между большими скоплениями около 30 Мnс, т. е. примерно в 10 раз больше, чем размеры скоплений. Это означает, что средняя плотность каждой структурной единицы в 100-1000 раз больше, чем та плотность, которая бы получилась, если бы все вещество равномерно «размазать» по всему пространству. Имеются и более крупные сгущения — сверхскопления. Таким образом, в масштабе 30 Мnс имеются отдельные структурные единицы, и, следовательно, Вселенная неоднородна. Если взять в 10 раз больший масштаб, то в таком кубе, где бы его ни помещать во Вселенной, будет примерно одно и то же количество скоплений галактик (примерно около 1000), т. е. в большом масштабе Вселенная приблизительно однородна. Пока исследовались скопления галактик с помощью оптических телескопов, мы не достаточно глубоко проникали в пространство, так как телескопы позволяют исследовать даже наиболее яркие объекты на расстояниях не более нескольких миллиардов парсек. Такой объем содержит порядка миллиона скоплений галактик. Точность оптических методов определений распределения галактик в пространстве не слишком велика и утверждение о том, что мир в среднем однороден, имело точность около 10-20%. За последнее десятилетие появились новые методы исследования крупномасштабной однородности и изотропии (так называют независимость свойств от направления в пространстве) Вселенной. Они связаны в первую очередь с измерением так называемого реликтового радиоизлучения, приходящего к нам с огромных расстояний. Мы подробно будем говорить дальше об этом излучении. Сейчас же отметим, что самые точные сегодняшние измерения не обнаружили отклонений в интенсивности этого излучения в разных направлениях на небе с относительной точностью в 10 -3 ÷10 -4 * .

* ( Мы не касаемся здесь небольшой неодинаковости интенсивности реликтового излучения в двух противоположных направлениях на небе, вызванных движением Солнца со скоростью около 360 км /сек относительно совокупности всех других галактик.)

Это свидетельствует о том, что свойства Вселенной одинаковы по всем направлениям, т. е., что Вселенная изотропна с высокой точностью. Но эти наблюдения, как мы увидим далее, свидетельствуют также и о том, что Вселенная с высокой точностью однородна. Отклонения в плотности распределения вещества от среднего значения в масштабах 1000 Мnс не превышают трех процентов, а в больших масштабах эти отклонения еще существенно меньше.

Таким образом, важнейшей наблюдаемой особенностью Вселенной является неоднородность, структурность в малом масштабе и однородность в большом масштабе.

В масштабах сотни мегапарсек вещество Вселенной можно рассматривать как однородную непрерывную среду, «атомами» которой являются галактики или скопления галактик.

В прошлом веке делались попытки построения так называемых иерархических моделей Вселенной. Согласно таким моделям во Вселенной имеется бесконечная последовательность систем все более высокого порядка: звезды объединены в галактики, галактики в скопления галактик, скопления образуют сверхскопления и т. д. до бесконечности. Наблюдения опровергают такое предположение.

Читайте также:  Мы идем по краю вселенной

При рассмотрении крупномасштабной структуры Вселенной надо исходить из свойств ее однородности и изотропии.

Наши работы с mitsubishi lancer 9 тюнинг Стингер-шоп.

Источник

Однородность вселенной больших масштабах

Данные нового исследования группы галактик, опубликованного в журнале Monthly Notices of the Royal Astronomical Society, могут положить конец дискуссии об однородности или фрактальности распределения материи во Вселенной: оно однородно в масштабах крупнее 300 млн световых лет.

Уже более ста лет известно, что звёзды группируются в звёздные скопления, а те — в галактики; чуть позже были открыты также скопления и сверхскопления галактик. А потому возник соблазн распространить предложение о существовании таких структур на всю видимую Вселенную. Открытие Великой стены Слоуна подбросило аргументов сторонникам такой точки зрения: объект в 1,37 млрд световых лет занимал одну шестидесятую диаметра наблюдаемой Вселенной; выходит, заявляют они, Вселенная в целом заполнена материей неоднородно!

Существующая космологическая модель базируется на эйнштейновских уравнениях, подразумевающих, что на самых больших масштабах распределение материи во Вселенной всё же однородно. Если же принять противоположную точку зрения, то всей космологической модели потребуется серьёзнейшая ревизия. Так неужели структура Вселенной близка к фракталам, а наше представление о тёмной энергии зиждется на глубоко ошибочных догадках?

Данные из свежего исследования ряда галактик, отчёт о котором опубликован в журнале Monthly Notices of the Royal Astronomical Society , возможно, положат конец этой периодически возобновляющейся дискуссии.

Сравнение масштабности исследования WiggleZ (его результаты выделены жёлтым) с другими, более ранними попытками анализа структуры Вселенной (иллюстрация Aaron Robotham, Simon Driver, ICRAR).

Авторы исследования — Мораг Скримджер и её коллеги из Международного центра радиоастрономических исследований и Университета Западной Австралии в Перте — работали с 3,9-метровым Англо-австралийским телескопом , расположенным в Обсерватории Сайдинг-Спринг . Учёные выяснили, что при рассмотрении Вселенной на масштабах более 350 млн световых лет материя в ней распределена очень равномерно, с весьма слабыми признаками фрактального распределения. Результаты весьма значимы, поскольку при общем диаметре наблюдаемой Вселенной в 93 млрд световых лет обнаружение однородного распределения уже на масштабах менее 1 к 300 практически исключает возможность выявления какой-либо неоднородности в наблюдаемой Вселенной в целом.

«Мы использовали результаты исследования WiggleZ, которое включает в себя более 200 000 галактик, находящихся в пространстве объёмом около трёх миллиардов кубических световых лет, — отмечает г-жа Скримджер. — Таким образом, это крупнейшая работа, когда-либо проводившаяся для такого измерения Вселенной в крупном масштабе».

Несмотря на консервативные выводы, исследование очень нужно астрономии: его итоги означают, что использовавшиеся в последние десятилетия инструменты изучения космоса адекватны поставленным задачам. Обнаружение фрактальных структур во вселенских масштабах заставило бы пересмотреть космологические теории, с неизбежным построением целого ряда новых гипотез, проверка которых заняла бы значительное время.

Так, согласно новой работе, выглядит крупномасштабное распределение материи во Вселенной. (Иллюстрация Greg Poole, Centre for Astrophysics and Supercomputing, Swinburne University.)

«Всё наше видение Вселенной, даже то, как мы интерпретируем свет, доходящий до нас от звёзд и галактик, было бы подвержено [пересмотру], если бы Вселенная не была однородной в крупном масштабе. Благодаря анализу того, как распределены в пространстве изученные при помощи WiggleZ галактики в масштабах до 930 млн световых лет, мы обнаружили, что их распределение очень близко к гомогенному — а значит, никаких крупномасштабных скоплений там нет. Так что мы с высокой степенью уверенности можем сказать, что наша картина Вселенной в больших масштабах корректна», — заключает г-жа Скримджер.

Вот, кстати, краткое изложение ею своих взглядов на проблему (если вас смущает некоторый акцент, активируйте титры):

С препринтом работы можно ознакомиться здесь .

Но, как и в любой развивающейся науке, даже самое убедительное астрономическое исследование можно парировать множеством контраргументов. Поэтому нетрудно предсказать «выпады» сторонников гипотезы о фрактальном распределении материи. Существуют теории , согласно которым Вселенная в целом примерно в 10 23 больше наблюдаемой Вселенной, и тогда «крупный масштаб» вообще недоступен наблюдениям с Земли, по крайне мере в обозримом будущем. С другой стороны, есть и обратные теории, включая ту, что истинная Вселенная меньше наблюдаемой, а свет галактик на окраине этой видимой части мироздания представляет собой повторы изображений более близких галактик, принесённые к нам светом, «обогнувшим» всю Вселенную (возможно, даже не один раз)…

Читайте также:  Кто подтвердил факт расширения вселенной

Источник

7. Однородность и изотропия Вселенной

7. Однородность и изотропия Вселенной

Приведем более строгие, чем в главе 6, определения однородности и изотропии. Почему это важно? Эти понятия определяются на данный момент времени, а космологическое пространство меняется со временем. В теории Ньютона в этом нет проблемы, поскольку понятие времени абсолютно. В СТО тоже нет больших проблем, определившись с выбором какой-либо инерциальной системы отсчета, наблюдатель также имеет единое время. А в ОТО, да еще в переменном по времени решении, ситуация сложнее. Поясним это на примере того же решения Фридмана: ds 2 = c 2 dt 2 – a 2 (t)dl 2 . Здесь каждому значению времени соответствует пространство со своим значением масштабного фактора a(t). Пространство-время как бы распадается на слои – пространства, сложенные «стопочкой». Ход времени определяется переходом от одного слоя (пространственного сечения) к другому, а каждый слой отвечает своему единственному моменту времени.

Рис. Д4. Расслоение пространства-времени на пространственные сечения

На рис. Д4 такое расслоение произвольного пространства-времени изображено символически, каждый слой – это 3-мерное пространство в данный момент времени. Для вселенной Фридмана каждое такое 3-мерное пространство и однородно, и изотропно. Но это произошло потому, что для поиска решений Фридман специально выбрал такую удобную систему координат именно с этим определением времени. На самом деле можно выбрать другую систему координат, для которой сечения одновременности уже не будут ни однородными, ни изотропными. В неоднородной же Вселенной подобрать однородные пространственные сечения вообще невозможно.

Теперь можно дать строгое определение: Вселенная однородна, если через каждую мировую точку (событие) проходит пространственное сечение однородности. В каждой точке на таком сечении плотность ?, давление p и кривизна пространства должны быть одинаковы.

Теперь определим изотропию Вселенной. Рост масштабного фактора означает и расширение материи, заполняющей Вселенную. На каждую частицу расширяющегося вещества можно мысленно «посадить» сопутствующего наблюдателя. Вселенная изотропна если, каждый сопутствующий наблюдатель не может отличить одно направление от другого.

Если Вселенная изотропна, то она автоматически однородна. Действительно, если это не так, то будут какие-то ее части с разной плотностью, давлением и т. п. Но тогда, найдутся выделенные направления к областям с разными характеристиками, а это нарушение изотропии. А вот однородная Вселенная может быть анизотропной. Но для всех сопутствующих наблюдателей эта анизотропия будет одинаковой. Таких моделей Вселенной существуют целые семейства, они до сих пор активно исследуются. Поскольку изотропия Вселенной подтверждена с определенной точностью, то модели с меньшей величиной анизотропии имеют право на жизнь.

В качестве наглядного и простого примера рассмотрим однородную, но анизотропную космологическую модель, предложенную американским математиком Эдвардом Каз-нером (1878–1955) в 1922 году. Эта вселенная, в отличие от фридмановской, без материи, хотя ее можно заполнить веществом, но «пробным», так что оно не влияет на геометрию. Решение Казнера, метрика которого имеет вид

не выдумано, а является решением уравнений Эйнштейна. Параметры p 1, p 2, p 3 удовлетворяют двум соотношениям p 1 + p 2 + p 3 = 1 и p 1 2 + p 2 2 + p 3 2 = 1. Отсюда следует, что все числа не могут быть равными одновременно, мало того, одно из них всегда отрицательно. Исключение составляют два вырожденных случая.

Поскольку модель пустая, то пространство характеризуется только значениями кривизны в каждой точке. Эти значения определяются только моментом времени и одинаковы во всех точках пространства, так как метрические коэффициенты не зависят от пространственных координат, то есть пространство однородно. Из ограничений на параметры можно сделать вывод, что эта вселенная расширяется. Действительно, элемент объема

Читайте также:  Индийское писание про устройство вселенной

dV = t p 1+p2+p3 dxdydz = tdxdydz увеличивается пропорционально времени. Однако увеличивается такая вселенная довольно странно – по двум координатам расширяется (тем, которым соответствуют положительные параметры), а по третьей – сжимается (ей соответствует отрицательный параметр). Очевидно, что это анизотропное поведение.

Казнеровский режим расширения, конечно, не соответствует современному расширению – слишком очевидна его анизотропия, которая не наблюдается. Однако, вблизи сингулярности t = 0, которая имеет место, так же, как и во фридмановском сценарии, решение Казнера представляется интересным космологам. Оказывается, при приближении к сингулярности возникает осциллирующий режим Казнера, когда отрицательный параметр начинает переходить от одного пространственного измерения к другому с возрастающей частотой. Это дает дополнительные возможности «подобраться» к пониманию физики космологической сингулярности. Связь с вселенной Фридмана, в которой мы живем, в одном из вариантов осуществляется следующим образом. Анизотропная часть модели Казнера трактуется как эффективная материя, которая с расширением распадается с образованием обычной материи. Если и остается анизотропия, то она не наблюдается из-за слабости эффекта.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

14. Судьба Вселенной

14. Судьба Вселенной Твердят, мол, сгинет мир в огне Или во льду. По опыту, пожалуй, мне Приятней погибать в огне[23]. Роберт Фрост Игра не закончена, пока она не закончилась. Йоги Берра Как мы уже видели, способность цивилизации на Земле или в космосе достичь уровня такого

МАСШТАБЫ ВСЕЛЕННОЙ

МАСШТАБЫ ВСЕЛЕННОЙ Наше путешествие начинается в привычном нам масштабе — том самом, в котором мы живем, пользуемся разными вещами, видим и трогаем их. Неслучайно именно один метр — не одна миллионная его доля и не десять тысяч метров — лучше всего соответствует размеру

ЭКСКУРСИЯ ПО ВСЕЛЕННОЙ

ЭКСКУРСИЯ ПО ВСЕЛЕННОЙ Книга и фильм «Степени десяти» (Powers of Ten) — одно из классических путешествий по далеким мирам и измерениям — начинаются и заканчиваются изображением пары людей, сидящих на травке в парке в Чикаго; надо сказать, что это место подходит для начала

5. Расширение вселенной

5. Расширение вселенной Тем временем в конце 1960-х нас снова ожидал кризис, хотя и гораздо менее драматичный, чем злополучное знакомство Роберта с эффектами лекарств. Членство Стивена в колледже в качестве научного сотрудника подходило к концу, и так как один раз срок уже

9. Происхождение Вселенной

9. Происхождение Вселенной Вопрос о происхождении Вселенной немного схож с самой древней проблемой: что появилось сначала – курица или яйцо? Другими словами, какая сила создала Вселенную и что создало эту силу? Или, возможно, Вселенная или создавшая ее сила существовали

Содержимое Вселенной

Содержимое Вселенной «Что там?» — привычный вопрос людей, вглядывающихся в небо.Попытки астрономии ответить на него в отношении всей Вселенной то дразнят нас своими поразительными ответами, то обескураживают столь же поразительными вопросами. Содержимое всей

Жизнь во Вселенной

Жизнь во Вселенной 107. Как жизнь начиналась? Определение жизни трудное, но выглядит приблизительно так: жизнь это самоподдерживающаяся химическая система, способная следовать дарвиновской эволюции.Нет сомнения, что жизнь может возникнуть во Вселенной. Посмотрите в

9. Модели Вселенной

9. Модели Вселенной Ни один физик не оспаривает сегодня специальную теорию относительности, и лишь немногие оспаривают основные положения общей теории относительности. Правда, общая теория относительности оставляет многие важные проблемы нерешенными. Несомненно и то,

2. Вкратце о Вселенной

2. Вкратце о Вселенной Вселенная безбрежна и невероятно прекрасна. Удивительно проста в одних своих проявлениях и невероятно сложна в других. Из всего несметного многообразия понятий, относящихся ко Вселенной, нам сейчас понадобится лишь несколько – о них

Источник

Adblock
detector