Почему Солнце до сих пор не сгорело?
Персональный обогреватель нашей планеты невероятно эффективен.
Наше Солнце — довольно средняя звезда в галактике Млечный путь — не самая яркая, не самая большая и существует всего 4,5 миллиарда лет. Она уникальна только тем, что её свет и тепло поддерживают жизнь на единственной обитаемой планете, которую мы знаем во Вселенной. К счастью для нас, людей, Солнце не сгорело с тех пор, как мы появились несколько сотен тысяч лет назад. Но откуда у него могло быть столько топлива? Почему оно не погасло, как свеча или костер? И когда оно наконец сгорит?
Это был насущный вопрос в XIX веке. В 1848 году немецкий естествоиспытатель Роберт фон Майер ( Robert von Mayer) выдвинул гипотезу, согласно которой Солнце нагревается благодаря бомбардировке его метеоритами. Разумеется, эта теория даже в то время не выдерживала критики. Поэтому, во второй половине XIX века наиболее правдоподобной считалась теория, выдвинутая немецким и британским физиками Германом Гельмгольцем ( Hermann von Helmholtz) и Уильямом Томсоном (лордом Кельвином), согласно которой Солнце нагревается за счёт медленного гравитационного сжатия. Этот процесс известен, как механизм Кельвина — Гельмгольца — остывание поверхности небесного тела приводит к падению внутреннего давления, из-за чего звезда сжимается, что в свою очередь приводит к разогреванию её ядра.
Однако, основанные на этом механизме расчёты оценивали максимальный возраст Солнца в 20 млн лет, что значительно меньше его действительного возраста.
Согласно другой гипотезе, популярной в XIX веке, Солнце буквально горит, т.е. происходит химическая реакция, которую мы видим, когда зажигаем спичку или разводим костер. Но и расчеты возраста Солнца по это гипотезе давали результат, который не соответствовал тому, что мы знали о возрасте Солнечной системы — 4,5 миллиарда лет. Если бы Солнце сжималось или горело, у него бы закончилось топливо задолго до того, как мы появились в этом мире. Очевидно, что-то происходило ещё, помимо сжатия и горения.
Спустя несколько десятилетий, в 1920-х годах, было найдено правильное объяснение механизмов «горения» Солнца. Сначала «отец» ядерной физики и лауреат Нобелевской премии по химии 1908 года Эрнест Резерфорд ( Ernest Rutherford) предположил, что источником энергии Солнца является радиоактивный распад .
Позднее, вооружившись знаменитым уравнением Эйнштейна E=mc², которое утверждает, что всё, что имеет массу, должно иметь эквивалентное количество энергии, британский астрофизик Артур Стэнли Эддингтон ( Arthur Stanley Eddington) предположил, что Солнце фактически преобразует свою массу в энергию. Вместо печи, которая превращает древесину и уголь в золу (попутно испуская свет и тепло), центр Солнца больше похож на гигантскую атомную электростанцию.
Солнце содержит огромное количество атомов водорода. Как правило, нейтральный атом водорода содержит положительно заряженный протон и отрицательно заряженный электрон, который вращается вокруг него. Когда этот атом встречает один из других атомов водорода, их соответствующие внешние электроны магнитно отталкиваются друг друга. Это предотвращает столкновение и слияние протонов друг с другом. Но ядро Солнца настолько горячее и сжатое, что атомы носятся с такой громадной кинетической энергией, что они преодолевают силу, связывающую их частицы вместе, и электроны отделяются от своих протонов. Это означает, что протоны, обычно защищенные электронами внутри ядра атома водорода, могут соприкасаться друг с другом и соединяются вместе в процессе, называемом термоядерным синтезом.
Так же, как внутри ядерного реактора, атомы внутри ядра Солнца постоянно врезаются друг в друга. Чаще всего четыре протона водорода сливаются друг с другом, чтобы создать один атом гелия. Попутно в этом процессе крошечная часть массы в этих четырех микроскопических протонах «теряется», но поскольку Вселенная сохраняет материю, она не может просто так исчезнуть. Эта «потерянная» масса ежесекундно трансформируется в огромное количество энергии, которую и излучает Солнце. Мощность этого излучения составляет 3,9×10²⁶ Вт. Это настолько огромное количество энергии, оно больше, чем всё электричество на Земле, которое будет использоваться свыше нескольких сотен тысяч столетий.
Эффективность термоядерного синтеза является основной причиной того, что Солнце так долго излучает тепло. Энергия, выделяемая при превращении всего одного килограмма водорода в гелий, такая же, как при сжигании 20 000 тонн угля. Поскольку Солнце очень массивное и относительно молодое, ученые считают, что оно использовало только около половины своего производящего энергию водорода.
В конце концов, ядро Солнца преобразует весь внутренний водород в гелий, и наша звезда умрет. Но, это произойдет только через около пяти миллиардов лет.
Источник
Почему в космосе холодно, если Солнце горячее?
Хоть Солнце и удалено на 150 миллионов км от нашей планеты, это не мешает ему дарить нам свое тепло ежедневно. Если даже на Земле температура доходит до +50°C и даже +60, зарегистрированных буквально в прошлом году в Кувейте, то что же происходит на более близком расстоянии к звезде? Но более интересно то, почему в космосе все равно холодно, если Солнце такое горячее? Об этом мы сегодня и поговорим.
Что такое тепло и температура
Для начала немного окунемся в матчасть, чтобы понять «откуда ноги растут». Первое, что нам нужно уяснить, это разница между словами «тепло» и «температура». Очень часто они используются как синонимы, но это не совсем правильно. Говоря простыми словами, тепло – это энергия. Она хранится как внутри Солнца, так и в нас с вами. А температура – измерение той самой энергии, способ вычислить, насколько теплый/холодный какой-нибудь объект или среда. Когда тепло покидает тело, его температура понижается.
«Выход» тепла из одного объекта и его переход в другой может осуществляться тремя способами: проводимостью, конвекцией и излучением. Проводимость характерна для твердых объектов. При нагревании более горячие частицы сталкиваются с более холодными и таким образом передают им тепло. Конвекция относится к газам и жидкостям. Вы наверняка знаете, что тепло не опускается, а поднимается. Именно поэтому в комнате под потолком всегда температура чуть выше, чем внизу. То же самое касается и поверхности воды, где заметно теплее, чем на дне. Это происходит благодаря конвекции. Молекулы жидкости или газа нагреваются и устремляются вверх. Там они вытесняют холодные молекулы, которые в свою очередь опускаются вниз.
Что такое тепло и температура
При излучении объект передает свое тепло в виде света. Возможно, для кого-то это станет открытием, но излучение характерно вообще для всего вокруг нас и для нас самих тоже. Люди также излучают тепло в форме инфракрасных волн. Увидеть это невооруженным глазом, конечно же, нельзя, но вот на тепловизоре – легко. Так работают различные приборы ночного видения и прочие инфракрасные камеры. Чем наблюдаемое тело горячее, тем больше тепла излучает и ярче светится на тепловизоре. Самым ярким примером (простите за каламбур) теплового излучения является наша звезда, которая отдает свое тепло всем планетам, вращающимся вокруг нее. Кому-то больше, кому-то меньше, но светит Солнце всем.
Если вы уловили все выше сказанное, то знайте, что мы уже близки к ответу на вопрос: «Почему в космосе холодно, если Солнце горячее?». Итак, для проводимости и конвекции необходимо определенное количество частиц, которые будут передавать тепло между собой, например, частицы воздуха в земной атмосфере. Но проблема космоса заключается в том, что там таких частиц крайне мало (и воздуха там нет, там вообще ничего нет, кроме вакуума), поэтому там эти два способа теплопередачи неэффективны от слова совсем.
Что же тогда остается? Правильно, излучение. Оно движется от Солнца и попадает на какой-либо объект, который начинает его поглощать. На Земле в этом случае сработала бы проводимость или конвекция, так как здесь есть достаточное для этого количество частиц материи, в нашем случае – воздуха. Но в космосе это не сработает, потому что в вакууме не хватает той самой материи, которая могла бы поглотить солнечное тепло и передать его другим объектам. Поэтому в космосе и холодно.
Почему в космосе холодно
Почему в тени так холодно
Как вам известно, в тени всегда прохладнее. Особенно сильно это заметно ночью, когда даже в летний период может быть достаточно холодно. Теперь вы знаете, что это объясняется отсутствием солнечного излучения в этой части планеты. Это полушарие просто повернуто в другую сторону – одно из доказательств того, что Земля круглая. Но сейчас не об этом.
Если в пределах нашей планеты во тьме температура падает на несколько градусов, то в космосе эта разница просто колоссальна. Вспомните тот же Меркурий, который невероятно горячий с одной стороны и дико холодный с другой. Но давайте для более наглядного примера возьмем что-нибудь поближе, например, Луну. Сторона нашего спутника, повернутая к Солнцу, нагревается до +127 градусов по Цельсию. В это время обратная сторона мерзнет при -173. Почему же такой же эффект не наблюдается на Земле? Все из-за атмосферы. Именно она равномерно распределяет солнечное излучение, обеспечивая нам постепенное снижение и увеличение температуры, а не резкое. Если бы Земля не вращалась вокруг своей оси, температура на темном полушарии постепенно продолжила бы падать, а на светлом – повышаться.
Еще один известный пример – солнечный зонд Parker, который был отправлен изучать наше светило. Он использовал теплозащитный экран, чтобы не сгореть от солнечного излучения. И температура этого экрана повышалась до 120 градусов, а вот сам зонд, который за ним прятался, промерзал до -150.
Источник
Почему в космосе холодно, если Солнце горячее
Солнце находится на расстоянии около 150 миллионов километров от Земли, но мы можем чувствовать его тепло каждый день. Удивительно, как горящий объект издалека может излучать тепло на таком большом расстоянии.
Мы не говорим о температурах, которые едва регистрируют его присутствие. В 2019 году температура в Кувейте достигла 63 ° C под прямыми солнечными лучами. Если вы будете стоять при таких температурах в течение длительного периода, вы рискуете умереть от теплового удара.
Но больше всего озадачивает то, что космическое пространство остается холодным. Итак, почему пространство такое холодное, если Солнце такое жаркое?
Чтобы понять это удивительное явление, важно сначала распознать разницу между двумя терминами, которые часто используются взаимозаменяемо: тепло и температура.
Роль тепла и температуры
Проще говоря, тепло — это энергия, хранящаяся внутри объекта, в то время как тепло или холодность этого объекта измеряется температурой. Таким образом, когда тепло передается объекту, его температура повышается. И происходит снижение значения температуры, когда тепло извлекается из объекта.
Эта передача тепла может происходить через три режима: проводимость, конвекция и излучение.
Теплопередача через проводимость происходит в твердых телах. Когда твердые частицы нагреваются, они начинают вибрировать и сталкиваться друг с другом, передавая тепло при этом от более горячих частиц к более холодным.
Теплопередача через конвекцию — явление, наблюдаемое в жидкостях и газах. Этот режим теплопередачи также происходит на поверхности между твердыми телами и жидкостями.
Когда жидкость нагревается, молекулы поднимаются вверх и переносят тепловую энергию вместе с ними. Комнатный обогреватель — лучший пример, демонстрирующий конвективный теплообмен.
Когда обогреватель нагревает окружающий воздух, температура воздуха будет повышаться, и воздух поднимется до верха комнаты. Присутствующий сверху холодный воздух вынужден двигаться вниз и нагреваться, создавая конвекционный ток.
Передача тепла посредством излучения — это процесс, при котором объект выделяет тепло в форме света. Все материалы излучают некоторое количество тепловой энергии в зависимости от их температуры.
При комнатной температуре все объекты, включая нас, людей, излучают тепло в виде инфракрасных волн. Из-за излучения тепловизионные камеры могут обнаруживать объекты даже ночью.
Чем горячее объект, тем больше он будет излучать. Солнце является отличным примером теплового излучения, которое переносит тепло через солнечную систему.
Теперь, когда вы знаете разницу между теплом и температурой, мы очень близки к тому, чтобы ответить на вопрос, поставленный в заголовке этой статьи.
Теперь мы знаем, что температура может влиять только на материю. Однако в космосе недостаточно частиц, и это почти полный вакуум и бесконечное пространство.
Это означает, что передача тепла неэффективна. Невозможно передать тепло посредством проводимости или конвекции.
Излучение остается единственной возможностью.
Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие объект, начинают поглощать энергию. Эта энергия начинает двигаться атомы вибрировать и заставлять их производить в процессе тепло.
Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени.
Горячие предметы остаются горячими, а холодные остаются холодными.
Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло.
Это естественно вызывает вопрос: Что произойдет, если мы поместим что-то вне атмосферы Земли?
Космическое пространство может с легкостью заморозить или сжечь вас
Когда объект находится за пределами земной атмосферы и при прямом солнечном свете, она будет нагрета до около 120°C. Объекты вокруг Земли, и в космическом пространстве, которые не получают прямых солнечных лучей находятся в пределах 10°C.
Температура 10°C обусловлена нагревом некоторых молекул, покидающих земную атмосферу. Однако, если мы измерим температуру пустого пространства между небесными телами в космосе, это будет всего на 3 Кельвина выше абсолютного нуля.
Итак, главный вывод здесь заключается в том, что температуру Солнца можно почувствовать только в том случае, если есть материя, чтобы поглотить ее, в космосе почти нет материи, отсюда и холод.
Две стороны солнечного тепла
Мы знаем, что в затененных областях холодно. Лучшим примером является ночное время, когда температура снижается, так как в этой части Земли нет излучения.
Однако в космосе все немного по-другому. Да, объекты, которые скрыты от солнечного излучения, будут холоднее, чем пятна, которые получают солнечный свет, но разница довольно существенная.
Объект в космосе столкнется с двумя экстремальными температурами с двух сторон.
Давайте возьмем для примера Луну. Области, которые получают солнечный свет, нагреваются до 127°C, а темная сторона Луны будет при температуре замерзания -173°C.
Но почему земля не имеет таких же эффектов? Благодаря нашей атмосфере инфракрасные волны от солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены.
Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.
Другим примером, показывающим полярность температуры в космосе, является влияние солнца на солнечный зонд Parker. Солнечный зонд Parker — это программа НАСА, где зонд был отправлен в космос для изучения Солнца.
Солнечный зонд «Паркер»
В апреле 2019 года зонд находился всего в 15 миллионах миль от Солнца. Чтобы защитить себя, он использовал теплозащитный экран.
Температура теплового экрана, когда он был бомбардирован солнечным излучением, составляла 121°C, в то время как остальная часть зонда имела -150°C.
Космос — это лучший термос
Когда нагревать нечего, температура системы остается прежней. Это относится и к космосу. Солнечное излучение может проходить через него, но нет молекул или атомов, чтобы поглотить это тепло.
Даже когда скала нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.
Следовательно, даже когда солнце излучает, пространство остается холодным как лед!
Источник