Меню

Околоземная орбита это космос или нет

Классификация околоземных орбит

Классификация околоземных орбит

Околоземные орбиты, на которые запускаются космические аппараты, принято делить на следующие категории. Низкие околоземные орбиты (НОО) располагаются на высоте от 160 до 2000 км над поверхностью нашей планеты (в первом случае период обращения равен примерно 88 минут, во втором — 127 минут). Объекты, движущиеся на высотах менее 200 км, испытывают заметное торможение в самых верхних слоях атмосферы и достаточно быстро падают на Землю. Поэтому орбиты ниже 300 км для спутников обычно не применяются — время их существования на таких высотах сравнительно невелико. Верхнее значение определяется внутренней границей радиационных поясов с повышенной концентрацией заряженных частиц, способных повредить электронное оборудование и нанести серьезный ущерб здоровью космонавтов.

На изображении в масштабе показана Земля и околоземные орбиты. Область НОО отмечена синим. Источник: wikipedia.org

Все пилотируемые космические полеты — за исключением девяти экспедиций к Луне в рамках американской программы Apollo — проходили в области НОО либо были суборбитальными. Наибольшей высоты (опять же, не считая лунных миссий) достиг в сентябре 1966 г. экипаж корабля Gemini 11, имевшего апогей 1374 км. В данный момент все обитаемые орбитальные станции и подавляющее большинство прочих искусственных спутников Земли находятся на низких орбитах. Также на них сосредоточена большая часть космического мусора.

Тангенциальная скорость объекта (перпендикулярная к направлению на центр Земли), необходимая для нахождения на стабильной НОО, составляет примерно 7,8 км/с, уменьшаясь с ростом высоты. Для достижения таких орбит при старте с земной поверхности требуется ракета-носитель с характеристической скоростью от 9,4 км/с — дополнительные 1,5-1,6 км/с «расходуются» на аэродинамические и гравитационные потери.

Многие спутники дистанционного зондирования Земли (ДЗЗ) и аппараты военной разведки выводят на НОО, чтобы вести съемку наземных объектов с как можно более близкого расстояния и достичь максимально возможного разрешения. Эти же орбиты занимают некоторые телекоммуникационные спутники, так как на такой высоте им требуются менее мощные усилители сигнала. Однако каждый подобный аппарат движется достаточно быстро и охватывает ограниченный участок земной поверхности, поэтому в таком случае создаются целые сети («созвездия») из множества спутников — например, в спутниковой телефонной системе Iridium их более 70.

Часто используемая разновидность ННО — солнечно-синхронная орбита (ССО), иногда именуемая гелиосинхронной — рассчитывается таким образом, чтобы объект, находящийся на ней, проходил над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время. Обычно такие орбиты имеют высоту порядка 800 км и наклонение около 90° (их плоскости почти перпендикулярны к плоскости земного экватора). Если спутник на ССО ведет съемку поверхности, на всех его проходах угол падения солнечных лучей окажется примерно одинаковым. Например, спутник LandSat-7 может пересекать экватор 15 раз в сутки, каждый раз в 10:00 местного времени. Для аппаратов, ведущих наблюдения за Солнцем или требующих стабильного электроснабжения за счет использования фотогальванических панелей, можно подобрать орбитальные параметры, при которых они практически не будут попадать в тень Земли. Орбиты выбираются таким образом, чтобы солнечная и лунная гравитация вызывала их прецессию в восточном направлении на 360° в год (чуть меньше чем на 1° в сутки), компенсируя вращение нашей планеты вокруг Солнца.

Спутниковое созвездие Iridium (концепт). Источник: Iridium

После окончания функционирования искусственных космических объектов осуществляется их увод на орбиту захоронения, как правило, лежащую выше их рабочей орбиты (чтобы дополнительно ослабить влияние атмосферы). В частности, низкоорбитальные разведывательные спутники с ядерной энергетической установкой — в т.ч. радиолокационные — отправляют на высоту порядка 650-1000 км, где расчетный срок их существования составляет порядка 2 тыс. лет. Часто туда отправляется не сам спутник, а только активная зона реактора. Считается, что за этот срок в ней распадутся самые вредные радиоактивные изотопы… либо же человечество изобретет способ утилизировать опасную технику.

Выше 2000 км находится зона так называемых средних околоземных орбит. Их использует сравнительно малое количество космических аппаратов — в основном научно-исследовательских и навигационных (в частности, спутники системы GPS движутся по орбитам высотой 20 350 км с периодом обращения 12 часов). Главная проблема в этой области пространства связана с радиационными поясами и содержащимися в них высокоэнергетическими заряженными частицами.

Верхнюю границу «средней» зоны отмечают геосинхронные орбиты (ГСО) — они имеют радиус 42 164 км, что соответствует высоте над уровнем моря 35 786 км. Период обращения объектов на таких орбитах равен звездным суткам (23 часа 56 минут 4,1 секунды). Их частным случаем является геостационарная орбита — круговая и лежащая в плоскости земного экватора (0° широты). Спутник, движущийся по ней, фактически оказывается «висящим» над одной и той же точкой Земли. Поэтому приемная антенна, однажды направленная на него, не будет требовать дальнейшего наведения. Очевидно, такие орбиты особенно удобны для телекоммуникационных аппаратов, а также специализированных метеорологических обсерваторий, ведущих мониторинг определенного региона.

Если орбита наклонена к экватору и имеет небольшой эксцентриситет, то при наблюдении с Земли спутник в течение суток будет описывать на небе «восьмерку». В некоторых случаях «восьмерка» может выродиться в эллипс (как у спутников серии Canyon), а при значительном эксцентриситете и нулевом наклонении — в отрезок прямой, лежащий в экваториальной плоскости.

Схема, показывающая разницу между круговой и эллиптической орбитой. Источник: http://mediasat.info

Идеальная ГСО практически недостижима, так как аппараты на ней испытывают также притяжение со стороны Луны и Солнца, воздействие земного магнитного поля, солнечного ветра и другие посторонние возмущения, «сталкивающие» их с точки стояния. Поэтому на борту геостационарных спутников предусмотрена корректирующая двигательная установка с запасом топлива. Кроме того, такие спутники не видны из местностей в окрестностях полюсов, простирающихся приблизительно до 81° северной и южной широты.

Читайте также:  Актуальность проекта космос подготовительная группа

Дважды в году (вблизи весеннего и осеннего равноденствий) возникают ситуации, когда телекоммуникационные аппараты на ГСО проецируются на солнечный диск. В это время связь через них затруднена, а иногда вообще невозможна.

Геостационарная орбита захоронения расположена примерно на 200 км выше «стандартной» ГСО. Туда отправляют спутники, выработавшие свой ресурс или исчерпавшие запасы горючего для бортовых двигателей. Далее до расстояния порядка 300 тыс. км (точнее, до точки Лагранжа L1 системы «Земля-Луна») находится область высоких околоземных орбит. Пока они используются довольно редко — в частности, в этой области пространства сейчас работает космический телескоп TESS (Transiting Exoplanet Survey Satellite).

Источник

Околоземная орбита

Орби́та (от лат. orbita «колея, дорога, путь») — траектория движения материальной точки в заранее заданной системе пространственных координат для заданной в этих координатах конфигурации поля сил, которые на неё действуют. Термин был введён Иоганном Кеплером в книге «Новая астрономия» (1609) [1] .

В небесной механике это траектория небесного тела в гравитационном поле другого тела, обладающего значительно большей массой (планеты, кометы, астероида в поле звезды). В прямоугольной системе координат, начало которой совпадает с центром масс, траектория может иметь форму конического сечения (окружности, эллипса, параболы или гиперболы). [2] При этом его фокус совпадает с центром масс системы.

Содержание

Кеплеровы орбиты

Долгое время считалось, что планеты должны иметь круговую орбиту. После долгих и безуспешных попыток подобрать круговую орбиту для Марса, Кеплер отверг данное утверждение и, впоследствии, используя данные измерений, сделанных Тихо Браге, сформулировал три закона (см. Законы Кеплера), описывающих орбитальное движение тел.

  • фокальный параметр p <\displaystyle p>, большая полуось a <\displaystyle a>, радиус перицентра, радиус апоцентра — определяют размер орбиты,
  • эксцентриситет ( e <\displaystyle e>) — определяет форму орбиты,
  • наклонение орбиты ( i <\displaystyle i>),
  • долгота восходящего узла ( Ω <\displaystyle \Omega >) — определяет положение плоскости орбиты небесного тела в пространстве,
  • аргумент перицентра ( ω <\displaystyle \omega >) — задаёт ориентацию аппарата в плоскости орбиты (часто задают направление на перицентр),
  • момент прохождения небесного тела через перицентр ( T 0 <\displaystyle T_<0>>) — задаёт привязку по времени.

Эти элементы однозначно определяют орбиту независимо от её формы (эллиптической, параболической или гиперболической). Основной координатной плоскостью может быть плоскость эклиптики, плоскость галактики, плоскость земного экватора и т. д. Тогда элементы орбиты задаются относительно выбранной плоскости.

Классификация

По центральному телу орбиты

  • галактоцентрическая – орбита вокруг центра галактики (Солнце находится на орбите вокруг галактического центра Млечного пути)
  • гелиоцентрическая – орбита вокруг Солнца (в Солнечной системе все планеты, кометы, астероиды, а также некоторые космические аппараты находятся на такой орбите); частным случаем является подковообразная орбита
  • геоцентрическая (также околоземная) – орбита вокруг Земли (на ней находятся Луна, искусственные спутники Земли и большая часть космического мусора)
  • окололунная (также селеноцентрическая) – орбита вокруг Луны, естественного спутника Земли
  • ареоцентрическая – орбита вокруг Марса

По высоте геоцентрической орбиты

  • низкая околоземная – геоцентрическая орбита с высотой до 2000 км
  • средневысокая – геоцентрическая орбита с высотой выше 2000 км, но ниже геосинхронной орбиты (35786 км) (на этой орбите находятся спутниковые системы навигации – GPS, ГЛОНАСС, «Бэйдоу», «Галилео»)
  • геосинхронная – геоцентрическая орбита на высоте 35786 км, на которой орбитальный период равен звёздным суткам Земли (периоду вращения Земли вокруг своей оси); частным случаем является геостационарная орбита, имеющая нулевое наклонение относительно экватора Земли
  • высокая эллиптическая – геоцентрическая орбита с высотой апогея, значительно превышающей высоту перигея; частными случаями являются геопереходная орбита, гомановская орбита, биэллиптическая переходная орбита, орбита «Молния» и орбита «Тундра»

По эксцентриситету орбиты

  • круговая – орбита с эксцентриситетомe = 0, имеющая форму окружности
  • эллиптическая – орбита с эксцентриситетом 0 1, имеющая форму гиперболы
  • радиальная – орбита с эксцентриситетом e = 1 и нулевым угловым моментом

По наклонению орбиты

  • наклонная – орбита с наклонением i > 0° относительно плоскости отсчёта (например, относительно экватора Земли, эклиптики, галактической плоскости); частным случаем является полярная орбита с наклонением i=90° относительно экватора Земли
  • экваториальная – орбита с наклонением i = 0° относительно экватора центрального тела орбиты; частными случаями являются геостационарная орбита и ареостационарная орбита

По синхронности орбиты с центральным телом орбиты

  • синхронная – орбита, на которой орбитальный период равен звёздным суткам центрального тела; частными случаями являются геосинхронная орбита, солнечно-синхронная орбита, орбита «Тундра» и ареосинхронная орбита
  • субсинхронная – орбита, на которой орбитальный период меньше звёздных суток центрального тела; частными случаями являются полусинхронная орбита и орбита «Молния»

По направлению орбитального движения

  • прямая – орбита, на которой тело движется в направлении осевого вращения центрального тела
  • ретроградная – орбита, на которой тело движется в направлении противоположном осевому вращению центрального тела

По функции орбиты

  • орбита захоронения – орбита искусственных спутников Земли, на которую осуществляется их увод после окончания срока их активной работы
  • низкозатратная переходная траектория – орбита космического аппарата для достижения назначенной цели с наименьшим расходом топлива
  • низкая опорная орбита – начальная низкая околоземная орбита, которую предусмотрено существенно преобразовать посредством увеличения высоты или изменения наклонения орбиты

Также существует разделение на замкнутые и незамкнутые орбиты, в особенности для космических аппаратов.

Источник

Alpha Centauri

Павел Поцелуев · Статьи · 7 мая, 2020 18570

Какие бывают околоземные орбиты?

Во время наших прямых трансляций (а транслируем мы космические запуски) у людей часто возникают вопросы вида: «А что такое геостационарная орбита?», «А на какой высоте находится МКС?», «Орбита «Молния»? Это как!?». Мы решили перевести для вас замечательный каталог орбит NASA, а начнём как раз с околоземных орбит!

Высокие орбиты

Когда спутник достигает высоты ровно в 42164 километров от центра Земли (около 36 000 километров от поверхности Земли), он попадает в своеобразное орбитально «яблочко», место, где скорость его вращения вокруг Земли совпадает со скоростью вращения Земли вокруг своей оси. Поскольку эти скорости одинаковы, аппарат «зависает» вдоль одной долготы, хотя и может дрейфовать с севера на юг. Такая высокая орбита называется геосинхронной.

Спутник на круговой геосинхронной орбите непосредственно над экватором (эксцентриситет и наклонение равны нулю) будет иметь геостационарную орбиту, которая не перемещается относительно Земли вообще. Он всегда находится прямо над одним и тем же местом на поверхности Земли.

Геостационарная орбита чрезвычайно важна для мониторинга погоды, поскольку спутники на этой орбите обеспечивают постоянное наблюдение одной и той же области планеты. Когда вы заходите на любимый сайт проверить погоду и смотрите на спутниковые снимки своего родного города, изображение, которое вы видите, пришло от спутника на геостационарной орбите. Каждые несколько минут геостационарные спутники, такие как аппараты Geostationary Operational Environmental Satellite (GOES), отправляют информацию об облаках, водяном паре и ветре, и этот почти постоянный поток информации служит основой для большинства метеорологических наблюдений и прогнозирования.

Спутники на геостационарной орбите вращаются непосредственно над экватором, постоянно находясь над одной и той же областью. Это положение позволяет спутникам наблюдать за погодой и другими явлениями, которые часто меняются. Credit: NASA/Marit Jentoft-Nilsen and Robert Simmon.

Поскольку геостационарные спутники всегда находятся в одном месте, они также могут быть полезны для телефонной, теле- и радиосвязи. Созданные и запущенные NASA и управляемые Национальным управлением океанических и атмосферных исследований (NOAA), спутники GOES обеспечивают связь с поисково-спасательными маяками, которые помогают находить суда и самолеты, терпящие крушение.

Наконец, многие спутники на высокой орбите контролируют солнечную активность. Спутники GOES несут на себе большой набор инструментов для исследования «космической погоды»: они получают изображения Солнца и отслеживают магнитные и радиационные уровни в космосе вокруг аппаратов.

Есть и другие орбитальные «яблочки», расположенные непосредственно за пределами высокой околоземной орбиты — это точки Лагранжа. В точках Лагранжа земное притяжение компенсирует притяжение Солнца. Все, что находится в этих точках, притягивается к Земле и к Солнцу с одинаковой силой. Это такой баланс, в котором нам не нужно тратить топливо, чтобы удерживать орбиту аппарата постоянной.

Из пяти точек Лагранжа в системе Солнце-Земля только последние две, называемые L4 и L5, являются стабильными. Спутник в трех других точках подобен шару, оставленному на вершине крутого холма: любое небольшое возмущение выталкивает спутник из точки Лагранжа, словно мяч, который при малейшем взаимодействии скатится по холму вниз. Спутники в этих трех точках нуждаются в постоянной корректировке, чтобы оставаться сбалансированными. Аппараты в последних двух точках Лагранжа больше похожи на шар в глубокой тарелке: даже если их немного подтолкнуть, они вернутся в точку Лагранжа (в центр тарелки в нашей аналогии).

Точки Лагранжа — это специальные места, где спутник останется неподвижным относительно Земли, пока и спутник и Земля вращаются вокруг Солнца. L1 и L2 расположены выше дневных и ночных сторон Земли соответственно. L3 находится по обратную сторону Солнца, напротив Земли. L4 и L5 — в 60° впереди и позади Земли на одной орбите. Credit: NASA/Robert Simmon.

Ближайшие к Земле точки Лагранжа находятся примерно в 5 раз дальше, чем Луна. L1 находится между Солнцем и Землей и всегда обращена к дневной стороне Земли. L2 находится напротив солнца, всегда на ночной стороне. Credit: NASA/Robert Simmon.

Первая точка Лагранжа расположена между Землей и Солнцем, что позволяет спутникам в этой точке постоянного наблюдать за нашей звездой. Солнечная и гелиосферная обсерватория (SOHO), спутник НАСА и Европейского космического агентства, которому поручено контролировать Солнце, обращается вокруг первой точки Лагранжа примерно в 1,5 миллионах километров от Земли.

Вторая точка Лагранжа находится примерно на том же расстоянии от Земли, но расположена за Землей относительно Солнца — Земля всегда находится между второй точкой Лагранжа и звездой. Поскольку Солнце и Земля находятся на одной линии, спутники в этом месте нуждаются только в одном тепловом щите, который будет блокировать тепло и свет, исходящие от Солнца и Земли. Это хорошее место для космических телескопов, в том числе для будущего космического телескопа им. Джеймса Уэбба (запуск ожидается в 2021 году). В этой же точке, например, работал зонд WMAP (Wilkinson Microwave Anisotropy Probe), исследовавший реликтовое излучение Вселенной с 2001 по 2009 год — именно его наблюдения помогли значительно продвинуться в теории тёмной материи и тёмной энергии.

Третья точка Лагранжа находится по другую сторону Солнца от Земли, так что Солнце всегда находится между ней и Землей. Без специальных ретрансляторов спутник в таком положении не сможет общаться с Землей — Солнце заблокирует прямые сигналы.

Крайне стабильные четвертая и пятая точки Лагранжа находятся на орбите Земли вокруг Солнца, на 60 градусов впереди и позади нашей планеты. Двойная солнечная обсерватория (STEREO) на своём пути к противоположным сторонам Солнца проходили именно четвертую и пятую точки Лагранжа — это позволяет создавать стереоскопические изображения звезды.

5 июля 2009 года два аппарата Двойной солнечной обсерватории (STEREO) на пути к точкам L4 и L5 сделали эти снимки солнечного пятна 1024. Виды Солнца в 60 градусов позади (на изображении — слева) и впереди (справа) от орбиты Земли показывают области поверхности Солнца, которые иначе были бы скрыты от зрения. Credit: NASA/STEREO.

Ближе к Земле спутники начинают вращаться быстрее. Стоит отметить две средние околоземные орбиты: полусинхронная орбита и Молния.

Полусинхронная орбита представляет собой околокруговую орбиту (с низким эксцентриситетом) на высоте 26 560 километров от центра Земли (около 20 200 км над поверхностью). Один полный оборот вокруг планеты на такой орбите происходит за 12 часов. Однако пока полусинхронный спутник вращается, Земля под ним тоже движется вокруг своей оси. Ежедневно такой аппарат пролетает над одними и теми же двумя точками на экваторе. Эта орбита является постоянной и очень предсказуемой. Именно она используется спутниками глобальной системы позиционирования (GPS).

Вторая известная средняя орбита Земли — орбита Молнии. Впервые она была использована Советским Союзом, а её особенность помогает наблюдать за высокими широтами. Геостационарная орбита полезна и удобна для постоянного наблюдения, но спутники на геостационарной орбите «подвешены» над экватором, поэтому они плохо работают в отдаленных северных или южных районах, которые всегда находятся на краю обзора геостационарных аппаратов. Орбита Молния является удобной альтернативой.

Орбита Молния сочетает в себе высокое наклонение (63,4°) с высоким эксцентриситетом (0,722), чтобы максимизировать время наблюдений в высоких широтах. Каждый оборот длится 12 часов, поэтому медленная, высотная часть орбиты повторяется в одном и том же месте каждую день и ночь. В настоящее время этот тип орбиты используют российские спутники связи и аппараты Sirius (Адаптированное цитирование книги «Основы космических систем» Винсента Л. Писакана, 2005 г.)

У Молнии высокий эксцентриситет: спутник движется по очень вытянутому эллипсу, ближе к одному из краёв которого находится Земля. Поскольку такой аппарат ускоряется силой притяжения нашей планеты, спутник движется очень быстро, когда он приближается к Земле. Когда он отдаляется, его скорость замедляется, поэтому он проводит больше времени на вершине своей орбиты, наиболее удаленной от Земли. Один полный оборот на такой орбите занимает 12 часов, но две трети этого времени аппарат видит лишь одно полушарие. Как и в случае полусинхронной орбиты, аппарат на Молнии проходит один и тот же путь каждые 12 часов. Это может быть полезно для связи на крайнем севере или юге.

Низкая околоземная орбита

Большинство научных спутников и множество метеорологических спутников находятся на почти круговой низкой околоземной орбите. Наклонение спутника зависит от того, с какой целью он запускается. Спутник TRMM, например, был запущен в 1997 году для мониторинга осадков в тропиках. Поэтому он имел относительно низкое наклонение (35 градусов) и оставался вблизи экватора, исправно выполняя свою миссию вплоть до 2015 года.

Низкое наклонение орбиты TRMM (всего 35° от экватора) позволяло его инструментам концентрироваться на тропиках. На этом изображении показана половина наблюдений, которые TRMM производил за один день. Credit: NASA/TRMM.

Многие спутники программы NASA по наблюдению за Землёй имеют почти полярную орбиту. На этой сильно наклоненной орбите спутник перемещается вокруг Земли от полюса к полюсу, совершая один оборот примерно за 99 минут. На одной половине орбиты спутник наблюдает дневную сторону Земли. На полюсе он пересекает ночную сторону.

Пока спутники летят наверху, Земля под ними тоже поворачивается. К тому времени, когда спутник снова перейдет в «дневную» область, он уже будет находиться над районом, прилегающим к той области, которую он наблюдал во время прошлого оборота. В течение суток полярные орбитальные спутники успевают рассмотреть большую часть Земли дважды: один раз при дневном свете и один раз в темноте.

Аппараты на солнечной синхронной орбите пересекают экватор примерно в одно и то же местное время каждый день (и ночь). Эта орбита позволяет проводить последовательные научные наблюдения, при этом угол между Солнцем и поверхностью Земли остается относительно постоянным. На этих иллюстрациях показаны 3 последовательные оборота солнечно-синхронного спутника с экваториальным временем пересечения 13:30. Последняя орбита спутника обозначена темно-красной линией, а предыдущие — более светлыми. Credit: NASA/Robert Simmon.

В то время как «яблочко» геосинхронных спутников находится над экватором (это место позволяет им оставаться в одной и той же позиции над Землёй), у полярно-орбитальных спутников есть своё «яблочко», которое позволяет наблюдать одну и ту же область. Эта орбита синхронизирована по Солнцу, что означает, что всякий раз, когда спутник пересекает экватор, локальное солнечное время на земле всегда одно и то же. Например, для спутника Terra это всегда около 10:30 утра, в это время спутник пересекает экватор в Бразилии. Когда спутник сделает полный оборот вокруг Земли через 99 минут, он пересечёт экватор в Эквадоре или Колумбии, примерно в те же 10:30 по местному времени.

Солнечно-синхронная орбита крайне важна для науки, потому что она удерживает угол падения солнечного света на поверхность Земли более-менее постоянным, хотя угол и будет меняться вместе со сменой времён года. Это постоянство означает, что ученые в течение нескольких лет могут сравнивать изображения одной и той же области в одно и то же время года, не беспокоясь слишком сильно об изменениях углов теней и освещения, которые могли бы создавать иллюзии изменений. Без солнечно-синхронной орбиты было бы очень сложно отслеживать изменения с течением времени. Было бы просто невозможно собрать информацию, необходимую для изучения изменений климата.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector