Меню

Описать метод с помощью которого определили химический состав солнца

Как узнали химический состав солнца

Нередко можно встретить у читателя и слушателя недоверчивое отношение к тому, что говорят и пишут астрономы о Солнце и звёздах. Действительно, как могли учёные определить размеры, движение, а тем более химический состав далёких звёзд и Солнца, узнать о процессах, происходящих в их недрах и на поверхности? Ведь астроном не может побывать на небесных светилах. Если бы даже существовал летательный аппарат, который был бы в состоянии преодолевать межзвёздные пространства, то и тогда человек не смог бы добраться до Солнца: под действием жгучих солнечных лучей и он и его аппарат неминуемо превратились бы в пар, задолго до того, как они достигли поверхности Солнца.

Астроном лишён возможности изучать поверхности и недра этих далёких миров тем опытным путём, каким изучают Землю географы и геологи. Он не может подвергнуть их атмосферы тому непосредственному исследованию в лабораториях, которому физики, геофизики и химики подвергают атмосферу земную. Астроном может лишь наблюдать космические тела. Единственно, что «соединяет» его с Солнцем и звёздами — это луч света. Луч — это тот мост, который связывает Землю с «небом», тот путь, который ведёт к познанию природы космических тел. Следовательно, изучение небесных светил сводится к изучению световых лучей, ими испускаемых.

И луч света рассказывает астроному об очень многом, сообщает ему много интересных данных о Солнце и звёздах, посланцами которых он является. На основе изучения лучей определяется температура, химический состав и скорости движения космических тел, получается много других нужных и ценных сведений.

Изучаются не только Солнце и звёзды, но и планеты, которые собственного света не имеют. Их изучение основывается на исследовании отражённых планетами солнечных лучей.

Наиболее мощным средством изучения небесных светил является спектральный анализ, открытый около 80 лет тому назад.

Как известно, свет представляет собой один из видов электромагнитной энергии, распространяющейся в пространстве волнообразно. Длина волн видимого света заключена в весьма узкие пределы — от 7 до 4 десятитысячных миллиметра. В эти ничтожно малые пределы укладывается всё разнообразие, всё богатство красок и оттенков, которые воспринимаются человеческим глазом.


Рис. 13. Спектр излучения. Заштрихованная сеткой часть спектра — видимые лучи.

Лучи с меньшей длиной волны, чем в 3—4 десятитысячных миллиметра (ультрафиолетовые), уже невидимы для глаза, так же, как и лучи инфракрасные, у которых длина волны больше, чем у волн видимого луча света (рис. 13).

Источник

Школьная Энциклопедия

Nav view search

Навигация

Искать

Химический состав небесных тел определяют с помощью спектрального анализа.

О спектральном анализе вы можете прочитать на нашем сайте: http://ency.info/index.php/earth/rabota-astrnom/14-rabota-astrnom/29-chto-takoye-spektralni-analiz.
Ученые точно узнали химический состав небесных тел: звезд, туманностей, комет. И что важно: в их состав входят все известные на Земле химические элементы. Открытие спектрального анализа сделало переворот в науке, так как в недалеком прошлом казалось, что человек никогда не сможет узнать состав небесных тел, удаленных от Земли на огромные расстояния. А зная химический состав звезды, можно довольно уверенно судить о времени ее образования.
Физические свойства материи на самых больших масштабах и возникновение Вселенной изучает наука космология.
Физическую природу космических тел (их плотность, температуру, массу, химический состав, возраст, образование и т.д.) изучает наука астрофизика (от греч. слов άστρον — светило и φύσις — природа).
Астрофизика основывается на законах физики и на материалах астрономических наблюдений. Главные методы астрофизики: спектральный анализ, фотография и фотометрия (научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения) вместе с обычными астрономическими наблюдениями. О рождении астрофизики говорить стало можно только после того, как во второй половине XIX века появился спектральный анализ. Спектры звезд позволяют определить температуру, плотность и химический состав атмосферы любого небесного тела, узнать расстояние до звезд и их светимость, измерить скорость движения звезд по лучу зрения и скорость их вращения вокруг оси, оценить напряженность магнитного поля звезд, выявить присутствие оболочек горячего газа вокруг звезд.

Читайте также:  Одежда которая меняет цвет от солнца

Рассмотрим изучение химического состава звезд на примере Солнца.
Химический состав атмосфер можно узнать по темным линиям спектра. Газ поглощает из состава спектра более горячего источника света те самые лучи, которые он сам излучает в раскаленном состоянии. Отсюда ученые сделали вывод, что раскаленные поверхности Солнца и звезд дают спектры в виде радужных полосок, но эти поверхности окружены разреженными и менее раскаленными газами, которые и вызывают появление в спектре темных линий. Эти газы образуют вокруг Солнца и звезд атмосферы, химический состав которых можно узнать по темным линиям спектра. Поверхности Солнца и звезд хотя и дают такой же спектр, как жидкие и твердые раскаленные тела, но состоят из раскаленных наэлектризованных газов, более плотных, чем окружающие их атмосферы.
Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большой точностью химический состав солнечной атмосферы. Так, например, известно, что химический состав солнечной фотосферы ( излучающий слой звёздной атмосферы, в котором формируется непрерывный спектр излучения) состоит из

Водорода 73,46 %
Гелия 24,85 %
Кислорода 0,77 %
Углерода 0,29 %
Железа 0,16 %
Неона 0,12 %
Азота 0,09 %
Кремния 0,07 %
Магния 0,05 %
Серы

В солнечной атмосфере установили присутствие множества известных нам на Земле химических элементов. Среди них газы: водород, азот; металлы: натрий, магний, алюминий, кальций, железо и многие другие. В 1942 году было обнаружено присутствие на Солнце в небольшом количестве золота.
Такие химические элементы, как, например, хлор, бор, йод, ртуть и некоторые другие, не были найдены на Солнце по их линиям в спектре. Одной из причин, возможно, является то, что эти элементы находятся не в атмосфере Солнца, а в его недрах. Между тем темные линии в спектре вызывают только те элементы, которые находятся в атмосфере Солнца и поглощают свет, идущий из более глубоких и более плотных раскаленных слоев Солнца.
Можно допустить, что хлор, бор, йод, ртуть и другие элементы на Солнце или в солнечной атмосфере имеются, но мы их обнаружить пока не можем.
Спектры звезд, свет которых, собранный с помощью телескопа, тоже можно направить в спектроскоп, похожи на спектр Солнца. И по их темным линиям можно определить химический состав звездных атмосфер так же, определили химический состав солнечной атмосферы по темным линиям спектра Солнца.
Оказывается, химический состав атмосфер звезд мало отличается от химического состава Солнца и нашей Земли. Во всяком случае, ни на Солнце, ни на звездах не найдено таких химических элементов, которые не были бы известны на Земле. Напомним, что и газ гелий, который сначала был обнаружен на Солнце, потом был найден на Земле.
По четкости, с которой видны темные линии спектров Солнца и звезд, можно определить долю каждого химического вещества в составе их атмосфер.

Определение химического состава небесных тел на основе изучения их спектров — очень сложная задача, требующая знания физических условий в исследуемом теле (особенно температуры) и применения методов теоретической астрофизики.
Ученые в результате исследований установили, что некоторые тела (например, звезды определенных типов) обладают теми или иными особенностями химического состава. Однако большинство остальных объектов состоит примерно из одних и тех же известных химических элементов. Поэтому можно говорить только о среднем космическом содержании элементов, о котором обычно судят по относительному числу атомов, находящихся в каком-либо объеме.

Читайте также:  Анализ химического состава солнца

Источник

Химический состав Солнца

С земной поверхности наше светило выглядит как яркий шар идеальной формы. До официального открытия на нём пятен астрономы были уверены в том, что объект не имеет дефектов. Однако впоследствии было выяснено, что звезда имеет несколько слоёв, как и Земля. Каждому из них присваивается своя опция. Особого внимания также заслуживает химический состав Солнца.

Химические элементы

Если бы человечество могло разложить эту звезду по частям и произвести сравнение составных элементов, получилась бы следующая картина:

  • 74% приходится на водород;
  • 24% — на гелий;
  • 1% — на кислород;
  • 1% — на прочие химические вещества.

К прочим элементам относится, например, кальций, неон, хром. Также в составе присутствует в незначительном количестве сера, кремний, магний, железо и т. д.

Состав фотосферы Солнца

Теория появления нынешнего состава

Вследствие Большого взрыва возник гелий и водород. На первых этапах становления космического пространства произошло возникновение водорода из элементарных частиц. Ввиду высокой температуры и немалого давления условия во Вселенной были примерно такими же, как в звёздном ядре. Впоследствии водород синтезировался в гелий, и возникли пропорции, которые сохранились до настоящего времени.

Что касается прочих элементов светила, их создание произошло в прочих звёздах. Дело в том, что в их ядерных частях наблюдается постоянный синтез водорода в гелий. Вследствие выработки всего кислородного вещества в ядре наблюдается их переход на ядерный синтез веществ с относительно большой массой. Например, лития, гелия, кислорода. Множество тяжёлых металлов, образовавшихся на Солнце, присутствует в прочих звёздах на завершающих этапах их жизней.

Интересен химический состав Солнца ещё и потому, что другие вещества в нём образовались иным способом. Например, самые тяжёлые элементы (уран, золото) появились в процессе детонирования светил, превышающих Солнце по размеру. За очень короткое время (буквально доли секунды) появления черной дыры элементы сталкивались между собой, что приводило к появлению новых веществ. После взрыва они были разбросаны по Вселенной, из-за этого и образовались новые светила.

Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только во время полного солнечного затмения.

Солнечные слои

Химический состав Солнца вызывает среди учёных немало вопросов. В частности, они связаны со слоями, которые в него входят. На первый взгляд, светило кажется обычным шаром с водородом и гелием. Но если изучить его строение и свойства более глубоко, можно обнаружить, что в составе присутствует несколько ярусов. По мере приближения к ядру происходит повышение температуры и давления. Вследствие этого произошло формирование слоёв, ведь при разных условиях основные вещества различны по характеристикам.

В нём наблюдается высокий температурный режим и давление. Это приводит к благоприятным условиям для синтеза. Здесь же формируются атомы гелия, образуется тепловая, световая энергия, доходящая до Земли.

Зона радиации

Начинается она у границы ядра и составляет 70% от радиуса звезды. Внутри неё присутствует особое вещество высокой плотности и температуры. Здесь же наблюдается реакция ядерного синтеза, вследствие которой формируются атомы гелия.

Читайте также:  Образование тени от солнца это диффузное отражение света

Конвективная зона

Располагается она снаружи области радиации. В ней внутреннее солнечное тепло перетекает по столбам горячего газа. Такая зона присутствует практически у всех звёзд. Например, у Солнца она простирается от 70%. У некоторых светил, где есть эта зона, может отсутствовать радиационная часть (обычно это карлики).

Фотосфера

Этот слой единственный, который можно увидеть с Земли. После него прозрачность утрачивается, поэтому специалисты астрономической науки вынуждены использовать для изучения внутренней части другие способы.

Таким образом, химический состав Солнца, несмотря на относительно большое количество полученных данных, является изученным не до конца.

Источник

Описать метод с помощью которого определили химический состав солнца

Солнце – ближайшая к нам звезда. Расстояние от Земли до Солнца равно 1 а. е. (149,6 млн км) – свет идет до Солнца всего 8 минут.

Размеры Солнца во много раз превышают не только размеры больших планет, но и расстояния от большинства спутников до планет. Радиус Солнца в 109 раз, а масса – в 330 000 раз больше радиуса и массы Земли.

Основные характеристики Солнца:
Масса 2∙10 30 кг
Радиус 696 000 км
Светимость 3,86∙10 26 Вт
Видимая звездная величина –26,75 m
Спектральный класс G2 V
Эффективная температура поверхности 5780 К
Возраст Около 5 млрд лет

В центре Солнца температура достигает 15 миллионов градусов, а давление в 200 миллиардов раз выше, чем у поверхности Земли. Газ сжат здесь до плотности около 150 000 кг/м 3 .

Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот).

Основной источник энергии – протон-протонный цикл. Это очень медленная реакция (характерное время протекания – 7,9∙10 9 лет), так как она обусловлена слабым взаимодействием. Суть реакции состоит в том, что из четырех протонов получается ядро гелия.

Строение Солнца удалось уточнить с помощью гелиосейсмологии (колебания поверхности Солнца – отзвук тех волн, которые распространяются в его глубинах). Атмосфера Солнца состоит из фотосферы, хромосферы и короны.

Фотосферой называется та часть атмосферы Солнца, в которой образуется видимое излучение. Ее толщина составляет всего 700 км. В фотосфере наблюдаются гранулы (светлые мелкие образования, размером 1000–2000 км), пятна (холодные области фотосферы, температура пятен около 3500–4500 К, размеры крупных пятен могут превышать 100000 км), факелы (светлые образования, окружающие пятна, температура факелов может достигать 8000 К, размеры – 30000 км).

Выше фотосферы расположена хромосфера Солнца, протяженностью 10000–15000 км. Над хромосферой могут наблюдаться протуберанцы – причудливой формы арки, фонтаны, облака.

Над хромосферой находится корона – самая разреженная и самая горячая часть атмосферы Солнца, размеры которой превышают размеры более низких слоев в сотни раз.

Основной характеристикой солнечной активности является число Вольфа , равное сумме общего количества пятен и удесятеренного количества групп пятен (одиночное пятно также считается группой) : Цикл солнечной активности повторяется в среднем через 11 лет.

Солнце – это звезда, которая образовалась после взрывов сверхновых, состоящая не только из водорода и гелия, но и содержащая железо и другие элементы, звезда, около которой есть планеты, содержащие много тяжелых элементов. Около Солнца смогла сформироваться планетная система, на третьей планете которой – Земле – возникла жизнь.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector