Меню

Определение ускорения свободного падения луна

Ускорение свободного падения на Земле и на Луне

Все тела притягиваются друг к другу — это закон всемирного тяготения. Силы, с которыми тела притягиваются вычисляются по формуле:

Здесь G — это гравитационная постоянная, равная 6,67 × 10 -11 Н · м 2 /кг 2 . Она численно равна силе, с которой одно тело массой 1 кг притягивает другое тело с массой 1 кг, находящееся от него на расстоянии 1 м. Как мы видим, это очень маленькая сила. Поэтому мы замечаем притяжение только к очень массивным телам, космического масштаба.

Если размеры одного тела несоизмеримо меньше размеров другого тела и оно находится на поверхности второго тела или на высоте намного меньше радиуса второго тела, то за расстояние между телами принимается радиус второго тела. (Притяжение всегда идет к центру тела.)

В результате действия закона всемирного тяготения планеты и другие космические тела притягивают к себе другие тела. Эта сила притяжения называется силой тяжести. Под ее действием падающим телам сообщается ускорение свободного падения (g). Сила тяжести вычисляется по формуле:

Подставим вместо F в первую формулу значение F из второй. При этом пусть m1 — это масса падающего на Землю тела. Обозначим ее как m. А m2 — это масса Земли. Обозначим ее как M. Тогда получим:

Разделим обе части формулы на m (массу падающего тела):

Мы видим, что ускорение свободного падения зависит от массы и радиуса планеты. Чем больше ее масса, тем сильнее она притягивает тела и тем больше на ней ускорение свободного падения. Чем больше радиус планеты, тем дальше от ее центра находится притягиваемое тело и тем меньше будет ускорение свободного падения.

Таким образом, чтобы сравнить ускорение свободного падения на Земле и Луне, надо сравнить отношения их масс к квадратам их радиусов. Но чтобы найти само ускорение свободного падения, надо еще умножить на гравитационную постоянную.

Масса Земли приблизительно равна 6 × 10 24 кг, а ее радиус приблизительно равен 6400 км (6,4 × 10 6 м). Поэтому ускорение свободного падения на Земле приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 6 × 1024 кг ÷ (6,4 × 106 м) 2 ≈ 0,977 × 10 1 ≈ 9,8 Н/кг (м/c 2 )

Масса Луны примерно равна 7,5 × 10 22 кг, а ее радиус примерно равен 1750 км. Поэтому ускорение свободного падения на Луне приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 7,5 × 10 22 кг ÷ (1,75 × 10 6 м) 2 ≈ 16,335 10 -1 ≈ 1,6 Н/кг (м/с 2 )

Отношение ускорений свободного падения на Земле и Луне равно 9,8 : 1,6 ≈ 6 : 1. Значит, сила притяжения тела с массой m на Луне будет примерно в 6 раз меньше, чем на Земле.

Источник

Ускорение свободного падения

О чем эта статья:

Каникулы со смыслом в Skysmart для детей 4-17 лет

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Читайте также:  Сравнение луна с чем

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:

Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

Читайте также:  Как узнать диспозитор луны

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Источник

Ускорение свободного падения в физике — формула и определение

История открытия

Учёные Древней Греции разделяли любое движение на два типа: естественное и принудительное. Перемещение тела под воздействием гравитации считалось естественным, так как не имело видимой причины и происходило само собой.

Аристотель считал, что скорость падения напрямую зависит от массы. Это ошибочное утверждение родилось в результате примитивных наблюдений. Философ приводил в пример движение к земле яблок и листьев. Очевидно, что последние летели гораздо медленнее. Исследователи тех времён ещё очень мало понимали в физике. Такие понятия, как сопротивление воздуха и ускорение были неизвестны.

Утверждения Аристотеля считались неоспоримым постулатом вплоть до начала XVII века. Галилео Галлилей решительно отверг древнюю классификацию движения. В результате проведения нескольких опытов с движением тела по наклонной плоскости, учёный ввёл понятие ускорения.

Определение ускорения свободного падения в физике

Основное внимание Галлилей уделял изучению процесса свободного падения. Самым знаменитым стал эксперимент, проведённый на Пизанской башне.

С сооружения высотой 60-м были одновременно сброшены два предмета:

  • маленький металлический шарик весом в пол фунта;
  • большая круглая бомба, весившая 100 фунтов.

Результат был просто ошеломляющим. Оба тела достигли земли практически одновременно, а небольшая разница была объяснена силой сопротивления воздушной среды. Надо заметить, что наука тех лет существенно отличалась от сегодняшней. Считалось, что воздух не мешает падению, а, напротив, увеличивает его скорость.

Ещё одним заблуждением того времени было утверждение о том, что любое движение со временем прекращается, даже если на его пути нет преград. Галлилей опроверг и этот ошибочный закон физики, введя определение инерции.

В XVI веке ещё не существовало точных хронометров. Из-за этого ускорение падения тел с Пизанской башни было рассчитано довольно грубо. Для более точного измерения учёный изучал равноускоренное движение шарика по наклонной плоскости. А более или менее правильное значение ускорения сумел вычислить Гюйгенс в 1660 г.

Физическая сущность

Свободным падением может называться равноускоренное движение тела в результате действующей на него силы тяжести, происходящее в вакууме. Атмосфера Земли способна тормозить ускорение и замедлять падающие предметы. Однако, если величина сопротивления воздуха небольшая, ей можно пренебречь. К примеру, в опыте Галилея на башне в Пизе использовались шарообразные предметы, обладающие аэродинамичной формой. В результате этого коэффициент торможения удалось свести к минимуму.

Ускорение у поверхности Земли не зависит от массы предмета — это постоянная величина, обозначающаяся латинской буквой g и составляющая 9,80665 м/с.^2. Из-за воздействия центробежных сил на экваторе его значение немного меньше, а на полюсах, соответственно, больше.

Величина ускорения свободного падения зависит от нескольких факторов:

  • географических координат, точнее, широты;
  • расстояния до поверхности планеты;
  • времени суток;
  • геомагнитных аномалий.

Вектор свободного падения всегда направлен вниз. Это можно наглядно увидеть, подбросив какой-либо предмет. Благодаря воздействию ускорения, его движение будет постепенно замедляться. Затем оно полностью остановится и направится в обратную сторону.

Формулы для расчёта

Галилей понимал, что исследование падения тел с Пизанской башни является несовершенным. Был поставлен новый эксперимент, в котором учёному удалось увеличить время движения и уменьшить сопротивление воздуха. Отполированные латунные шарики скатывались по желобам, расположенным под определённым углом наклона. В результате были выведен физический закон, согласно которому все падающие тела движутся с одинаковой, постоянно увеличивающейся скоростью.

Читайте также:  Прибывающая луна это состояние

Формула для нахождения: g=G (M/R ^ 2), где:

  • G — гравитационная постоянная;
  • M — масса планеты;
  • R — радиус планеты.

При помощи этой зависимости можно рассчитать значение g на поверхности любой планеты во вселенной.

Существуют задачи, для решения которых необходим более точный расчёт. В таком случае используется другая, расширенная формула: g=G (M/(R2+h)), ​где h — это высота над поверхностью планеты.

Стоит помнить, что для максимальной точности расчётов придётся учитывать большое количество факторов. Ускорение может измеряться при помощи специального прибора — гравиметра.

Ускорение на других планетах

Как видно из формулы, гравитационное ускорение напрямую зависит от массы и радиуса планеты. Из этого следует, что значение g на других планетах будет отличаться от земного.

Таблица показателя ускорения g для основных объектов Солнечной системы.

Наименование Ускорение, м/с. 2
Солнце 274,01
Венера 8,87
Земля 9,81
Марс 3,72
Юпитер 25,8
Сатурн 11,54
Уран 9,04
Меркурий 3,73
Нептун 11,33
Луна 1,69

Солнце является самым большим объектом в солнечной системе, его масса почти в 300 тыс. раз больше земной. Но как можно заметить из таблицы, ускорение на поверхности звезды превышает земное всего в 28 раз. Это объясняется огромным радиусом светила.

Во вселенной существуют очень компактные объекты с невероятной плотностью и чудовищным притяжением. Если взять среднюю нейтронную звезду с радиусом 13 км и массой 2,5*10 30 кг, то ускорение на её поверхности превысит земное в 100 млрд раз и составит довольно внушительное число — 9,87*10^11м/с. 2

Воздействие перегрузок на человека

Благодаря научно-техническому прогрессу и стремительному развитию технологий, современный человек имеет возможность пользоваться довольно быстрыми средствами передвижения. Чтобы попасть в любую точку планеты на самолёте, потребуется не более суток. Быстрая скорость передвижения неминуемо связана с таким понятием, как перегрузка.

Любая перегрузка являет собой отношение двух ускорений:

  • негравитационного;
  • свободного падения.

За единицу измерения принято брать гравитационное ускорение на Земле — 9,80665 м/с². Таким образом, нулевую перегрузку можно ощутить на себе лишь в невесомости.

Перегрузка является векторной величиной. Для людей и других живых организмов огромное значение имеет её направление. Это связано с тем, что организм приспособлен к постоянному воздействию гравитационного ускорения.

Характер положительной перегрузки заключается в том, что её вектор направлен вниз — от головы к ногам. Кровь оттекает от мозга и при показателе более 10 g человек может потерять сознание за считаные секунды. При отрицательном значении кровь, напротив, бьёт в голову. Это переносится гораздо хуже и может привести к кровоизлиянию и смерти.

Показатель перегрузки для различных ситуаций:

Пример Показатель, g
Статичное положение, 1
Взлёт пассажирского авиалайнера 1,5
Приземление на парашюте 1,8
Раскрытие купола 10−16
Спуск космического аппарата «Союз» 3−4
Высший пилотаж на спортивном самолёте от -7 до +12
Максимальная длительная перегрузка, переносимая человеком 8−10
Аварийный спуск из космоса 20−26
Рекордная не смертельная перегрузка при автокатастрофе 214
Торможение автоматического аппарата в атмосфере Венеры 350
Предел прочности твердотельного накопителя информации 1500
Снаряд в момент выстрела 47 тыс.

Военным и спортивным лётчикам приходится постоянно испытывать большие перегрузки. Для уменьшения вредного воздействия на организм существуют специальные защитные костюмы.

Переносить перегрузку лучше всего лёжа на спине. Именно в таком положении находятся космонавты при взлёте ракет.

Источник

Adblock
detector