Меню

Орбитальное расстояние от луны до земли

Орбита Луны

Люди всегда с восторгом смотрели на соседний спутник, кажущийся чем-то божественным из-за своей яркости. Луна вращается по орбите вокруг Земли с момента создания, поэтому за ней наблюдали и первые люди. Любопытство и эволюция привели к тому, что появились вычисления и мы начали отмечать шаблоны поведения.

Вращение Луны по орбите

К примеру, ось вращения Луны совпадает с орбитальным. По сути, спутник расположен в гравитационном блоке, то есть, мы всегда смотрим на одну сторону (так возникла идея о загадочной обратной стороне Луны). Из-за эллиптического пути небесное тело периодически кажется больше или меньше.

Орбитальные параметры Луны

Средний лунный эксцентриситет составляет – 0.0549, а значит Луна не проходит вокруг Земли по идеальному кругу. Среднее расстояние от Луны до Земли – 384748 км. Но может меняться от 364397 км до 406748 км.

Сопоставление кажущегося лунного размера в перигее и апогее

Это приводит к перемене угловой скорости и наблюдаемого размера. В фазе полной Луны и на позиции перигелия (ближе всего) мы видим ее на 10% крупнее и на 30% ярче, чем в апогее (максимальная отдаленность).

Средний наклон орбиты по отношению к плоскости эклиптики – 5.155°. Совпадают сидерический период и осевой – 27.3 дней. Это именуют синхронным вращением. Именно поэтому появилась «темная сторона», которую мы просто не видим.

Земля также совершает обороты вокруг Солнца, а Луна вращается вокруг Земли за 29.53 дней. Это синодический период, который подвергается фазам.

Лунный цикл орбиты

Лунный цикл порождает фазы Луны — кажущаяся перемена внешнего вида небесного тела в небе из-за изменения количества освещенности. Когда звезда, планета и спутник выстраиваются в одну линию, то угол между Луной и Солнцем составляет 0 градусов.

В этом периоде лунная сторона, повернутая к Солнцу, получает максимум лучей, а обращенная к нам – темная. Далее идет проход и угол растет. После Новолуния объекты разделены на 90 градусов, и мы уже видим иную картину. На нижней схеме можно подробно изучить, как формируются лунные фазы.

Если они расположены в противоположных сторонах, то угол – 180 градусов. Лунный месяц длится 28 дней, во время которого спутник «растет» и «убывает».

При четверти Луна заполнена меньше чем наполовину и растет. Далее идет переход за половину, и она угасает. Мы встречаем последнюю четверть, где освещена уже другая сторона диска.

Будущее лунной орбиты

Мы уже знаем, что спутник постепенно отдаляется по орбите от планеты (1-2 см в год). И это влияет на то, что с каждым веком день у нас становится на 1/500 секунды длиннее. То есть, примерно 620 млн. лет назад Земля могла похвастаться лишь 21 часом.

Сейчас сутки охватывают 24 часа, но Луна не прекращает попыток сбежать. Мы привыкли к спутнику и грустно терять такого напарника. Но отношения между объектами меняются. Интересно лишь, как это отразится на нас.

Источник

Лунное расстояние (астрономия) — Lunar distance (astronomy)

Основная информация Система единиц астрономия Единица расстояние Символ LD или Δ ⊕ L <\ textstyle \ Delta _ <\ oplus L>> Конверсии 1 LD в . . равно . Базовая единица СИ 384 399 × 10 3 м Метрическая система 384 399 км Английские единицы 238 854 миль Астрономическая единица 0,002 569 а.е.

Мгновенное расстояние Земля-Луна или расстояние до Луны — это расстояние от центра Земли до центра Луны . Лунное расстояние ( LD или ), или характеристическое расстояние Земля-Луна , является единицей измерения в астрономии . С технической точки зрения, это большая полуось геоцентрической лунной орбиты . Расстояние до Луны составляет примерно 400 000 км , что составляет четверть миллиона миль или 1,28 световой секунды . Это примерно в тридцать раз больше диаметра Земли . Δ ⊕ L <\ textstyle \ Delta _ <\ oplus L>>

Большая полуось имеет значение 384399 км (238 854 миль). Среднее по времени расстояние между центрами Земли и Луны составляет 385 000,6 км (239 228,3 миль). Фактическое расстояние меняется в течение орбиты Луны от 356 500 км (221 500 миль) в перигее до 406 700 км (252 700 миль) в апогее , в результате чего дифференциальный диапазон составляет 50 200 км (31 200 миль).

Читайте также:  Подъем неба или поддержка луны

Лунное расстояние обычно используется для выражения расстояния до сближающихся с Землей объектов . Большая полуось Луны — важная астрономическая система координат; точность измерения дальности в несколько миллиметров определяет большую полуось с точностью до нескольких дециметров; это имеет последствия для тестирования гравитационных теорий , таких как общей теории относительности , а также для уточнения других астрономических значений , таких как массы Земли , радиус Земли и вращения Земли. Измерение также полезно для определения радиуса Луны , массы Солнца и расстояния до Солнца .

Измерения расстояния до Луны с точностью до миллиметра производятся путем измерения времени, необходимого для прохождения света между станциями лунного лазерного определения дальности на Земле и ретрорефлекторами, установленными на Луне. Луна удаляется от Земли по спирали со средней скоростью 3,8 см (1,5 дюйма) в год, что было обнаружено в эксперименте по лазерной дальнометрии Луны .

СОДЕРЖАНИЕ

Значение

Лунное расстояние, выраженное в выбранных единицах

Ед. изм Среднее значение Неопределенность Ссылка
метр 3,843 99 × 10 8 1,1 мм
километр 384 399 1,1 мм
миля 238 854 0,043 дюйма
Радиус Земли 60,32
Австралия 1 / 388,6 знак равно 0,002 57
световая секунда 1,282 37,5 × 10 −12
  • AU — это 389 лунных расстояний.
  • Световой год составляет 24 611 700 лунных расстояний.
  • Радиус орбиты GEO (геостационарная земная орбита) составляет 42 164 км (26 199 миль) от центра Земли или 35 786 км (22 236 миль) от поверхности Земли. Первое средство 1 / 9,117 LD = 0,109 68 ЛД

Вариация

Мгновенное лунное расстояние постоянно меняется. На самом деле истинное расстояние между Луной и Землей может измениться так быстро, как 75 метров в секунду , или более 1000 км (620 миль) всего за 6 часов, из-за некруговой орбиты. Есть и другие эффекты, которые также влияют на расстояние до Луны. Некоторые факторы описаны в этом разделе.

Возмущения и эксцентриситет

Расстояние до Луны можно измерить с точностью до 2 мм за 1-часовой период отбора проб, что приводит к общей неопределенности в дециметр для большой полуоси. Однако из-за его эллиптической орбиты с переменным эксцентриситетом мгновенное расстояние изменяется с месячной периодичностью. Кроме того, на расстояние влияют гравитационные эффекты различных астрономических тел — в первую очередь Солнца и в меньшей степени Венеры и Юпитера. Другие силы, ответственные за мельчайшие возмущения: гравитационное притяжение к другим планетам Солнечной системы и астероидам; приливные силы; и релятивистские эффекты. Эффект радиационного давления от Солнца дает вклад в размере ± 3,6 мм до лунного расстояния.

Хотя мгновенная погрешность составляет несколько миллиметров, измеренное расстояние до Луны может отличаться от среднего значения более чем на 21 000 км (13 000 миль) в течение обычного месяца. Эти возмущения хорошо изучены, и расстояние до Луны можно точно смоделировать на протяжении тысяч лет.

Приливная диссипация

Благодаря действию приливных сил , то угловой момент вращения Земли медленно переносится на орбиту Луны. В результате скорость вращения Земли незаметно уменьшается (со скоростью 2,4 миллисекунды / столетие ), а лунная орбита постепенно расширяется. Текущая скорость рецессии составляет 3,830 ± 0,008 см в год . Однако считается, что в последнее время этот показатель увеличился, поскольку 3,8 см / год означало бы, что Луне всего 1,5 миллиарда лет, тогда как научный консенсус предполагает возраст около 4 миллиардов лет. Также считается, что эта аномально высокая скорость рецессии может продолжать ускоряться.

Предполагается, что расстояние до Луны будет продолжать увеличиваться до тех пор, пока (теоретически) Земля и Луна не станут приливно заблокированными , как Плутон и Харон. Это произойдет, когда продолжительность лунного орбитального периода будет равна периоду вращения Земли, который, по оценкам, составляет 47 сегодняшних дней. Тогда два тела будут в равновесии, и никакой другой энергии вращения больше не будет. Однако модели предсказывают, что для достижения этой конфигурации потребуется 50 миллиардов лет, что значительно больше, чем ожидаемый срок службы Солнечной системы .

Читайте также:  Полночь убывающая луна это когда

Орбитальная история

Лазерные измерения показывают, что среднее расстояние до Луны увеличивается, что означает, что Луна была ближе в прошлом, а дни Земли были короче. Исследования окаменелостей раковин моллюсков кампанской эры (80 миллионов лет назад) показывают, что в это время было 372 дня (23 часа 33 минуты) в году, что означает, что расстояние до Луны составляло около 60,05 R (383 000 км или 238 000 км). миль). Существует геологические данные , что среднее расстояние лунного было около 52 R (332000 км или 205000 миль) в течение докембрийской эры ; 2500 миллионов лет назад .

Гипотеза гигантского удара , широко принятая теория, утверждает, что Луна была создана в результате катастрофического столкновения между Землей и другой планетой, что привело к повторному скоплению фрагментов на начальном расстоянии 3,8 R (24000 км или 15000 км). ми). В этой теории предполагается, что первоначальный удар произошел 4,5 миллиарда лет назад.

История измерений

До конца 1950-х годов все измерения расстояния до Луны основывались на оптических угловых измерениях : самое раннее точное измерение было выполнено Гиппархом во 2 веке до нашей эры. Космический век стал поворотным моментом, когда точность этого значения была значительно улучшена. В 1950-х и 1960-х годах проводились эксперименты с использованием радаров, лазеров и космических аппаратов с использованием компьютерной обработки и моделирования.

Этот раздел предназначен для иллюстрации некоторых исторически значимых или иных интересных методов определения расстояния до Луны и не является исчерпывающим или всеобъемлющим списком.

Параллакс

Самый старый метод определения лунного расстояния заключался в измерении угла между Луной и выбранной точкой отсчета одновременно из нескольких мест. Синхронизацию можно координировать, производя измерения в заранее определенное время или во время события, которое наблюдают все стороны. До появления точных механических хронометров событием синхронизации обычно было лунное затмение или момент, когда Луна пересекала меридиан (если наблюдатели имели одинаковую долготу). Этот метод измерения известен как лунный параллакс .

Для повышения точности необходимо выполнить определенные настройки, такие как регулировка измеренного угла с учетом преломления и искажения света, проходящего через атмосферу.

Лунное затмение

Ранние попытки измерить расстояние до Луны основывались на наблюдениях за лунным затмением в сочетании со знанием радиуса Земли и пониманием того, что Солнце намного дальше, чем Луна. Наблюдая за геометрией лунного затмения, можно рассчитать расстояние до Луны с помощью тригонометрии .

Самые ранние сообщения о попытках измерить расстояние до Луны с помощью этого метода были сделаны греческим астрономом и математиком Аристархом Самосским в 4 веке до нашей эры, а затем Гиппархом , чьи вычисления дали результат 59–67 R ( 376 000 -427 000 км или 233 000 -265 000 миль ). Позднее этот метод нашел свое применение в работах Птолемея , который получил результат 64 + 1 ⁄ 6 R ( 409 000 км или 253 000 миль ) в его самой дальней точке.

Пересечение меридиана

Экспедиция французского астронома ACD Кроммелина наблюдала прохождение лунных меридианов в одну и ту же ночь из двух разных мест. Тщательные измерения с 1905 по 1910 год позволили измерить угол возвышения в тот момент, когда определенный лунный кратер ( Mösting A ) пересек местный меридиан, со станций в Гринвиче и на мысе Доброй Надежды , которые имеют почти одинаковую долготу. Расстояние рассчитывалось с погрешностью 30 км , и это оставалось окончательным значением лунного расстояния на следующие полвека.

Оккультации

Регистрируя момент, когда Луна закрывает фоновую звезду (или аналогично, измеряя угол между Луной и фоновой звездой в заданный момент), можно определить расстояние до Луны, если измерения производятся в нескольких местах известных разделение.

Астрономы О’Киф и Андерсон рассчитали расстояние до Луны, наблюдая четыре затмения в девяти местах в 1952 году. Они вычислили большую полуось 384 407 0,6 ± 4,7 км (238,859.8 ± 2,9 мили). Это значение было уточнено в 1962 году Ирен Фишер , которая включила обновленные геодезические данные для получения значения 384 403 0,7 ± 2 км (238,857.4 ± 1 мили).

Радар

В 1957 году в Лаборатории военно-морских исследований США был проведен эксперимент, в котором для определения расстояния Земля-Луна использовалось эхо сигналов радара. Длительные импульсы радара 2 мкс передавались с радиотарелки диаметром 50 футов (15 м). После того, как радиоволны отразились от поверхности Луны, был обнаружен обратный сигнал и измерено время задержки. По этому измерению можно было рассчитать расстояние. Однако на практике отношение сигнал / шум было настолько низким, что невозможно было надежно произвести точное измерение.

Читайте также:  Дата свадьбы по луне

Эксперимент был повторен в 1958 году в Королевском радиолокационном учреждении в Англии. Длительные импульсы радара Было передано 5 мкс с пиковой мощностью 2 мегаватт с частотой следования 260 импульсов в секунду. После того, как радиоволны отразились от поверхности Луны, был обнаружен обратный сигнал и измерено время задержки. Несколько сигналов складывались вместе для получения надежного сигнала путем наложения осциллограмм на фотопленку. На основе измерений расстояние было рассчитано с погрешностью 1,25 км (0,777 мили).

Эти первоначальные эксперименты были задуманы как эксперименты, подтверждающие правильность концепции, и длились всего один день. Последующие эксперименты, продолжавшиеся один месяц, дали большую полуось 384 402 ± 1,2 км (238 856 ± 0,75 мили), что было самым точным измерением лунного расстояния в то время.

Лазерная дальность

Эксперимент , который измерил туда-обратно время полета лазерных импульсов , отраженных непосредственно от поверхности Луны была выполнена в 1962 году, команда из Массачусетского технологического института , и советской команды в Крымской астрофизической обсерватории .

Во время миссий Аполлона в 1969 году астронавты разместили на поверхности Луны световозвращатели с целью повышения точности и точности этой техники. Измерения продолжаются и включают несколько лазерных установок. Мгновенная точность экспериментов по определению расстояния до Луны позволяет достичь разрешения в несколько миллиметров и является наиболее надежным методом определения расстояния до Луны на сегодняшний день. Большая полуось определена равной 384 399,0 км.

Астрономы-любители и гражданские ученые

Благодаря современной доступности устройств точного времени, цифровых камер с высоким разрешением, приемников GPS , мощных компьютеров и почти мгновенной связи, астрономы-любители стали производить высокоточные измерения расстояния до Луны.

23 мая 2007 год цифровые фотографий Луны во время ближайшего затенения из Регул были взяты из двух мест, в Греции и Англии. Путем измерения параллакса между Луной и выбранной звездой фона было вычислено расстояние до Луны.

Более амбициозный проект под названием «Кампания Аристарха» был реализован во время лунного затмения 15 апреля 2014 года. Во время этого мероприятия участникам было предложено сделать серию из пяти цифровых фотографий от восхода луны до кульминации (точки наибольшей высоты).

В этом методе использовалось преимущество того факта, что Луна фактически находится ближе всего к наблюдателю, когда она находится в самой высокой точке неба, по сравнению с тем, когда она находится на горизонте. Хотя кажется, что Луна самая большая, когда она находится около горизонта, на самом деле все наоборот. Это явление известно как иллюзия Луны . Причина разницы в расстоянии заключается в том, что расстояние от центра Луны до центра Земли почти постоянно в течение ночи, но наблюдатель на поверхности Земли фактически находится на расстоянии 1 радиуса Земли от центра Земли. Это смещение приближает их к Луне, когда она находится над головой.

Современные камеры достигли уровня разрешения, позволяющего запечатлеть Луну с достаточной точностью для восприятия и, что более важно, для измерения этого крошечного изменения видимого размера. Результаты этого эксперимента рассчитывались как LD = 60,51 +3,91
−4,19 R . Принятое значение для этой ночи было 60,61 R , что подразумевает точность 3%. Преимущество этого метода заключается в том, что единственное необходимое измерительное оборудование — это современная цифровая камера (оснащенная точными часами и GPS-приемником).

Другие экспериментальные методы измерения расстояния до Луны, которые могут быть выполнены астрономами-любителями, включают:

  • Съемка Луны до того, как она войдет в полутень и после полного затмения.
  • Измерение с максимальной точностью времени контактов затмения.
  • Получение хороших снимков частичного затмения, когда форма и размер тени Земли хорошо видны.
  • Съемка Луны, включая в одном поле зрения Спику и Марс, с разных мест.

Источник

Adblock
detector