Меню

Основное свойство вселенной ее расширение да или нет

Что означает расширение вселенной?

Верно то утверждение, что Вселенная расширяется, но это не меняет расстояния между Землей и Солнцем. Это также не влияет на расстояние между атомами.

Расширение Вселенной не влияет на относительное положение астрономических тел внутри галактик. Верно то утверждение, что Вселенная расширяется, но это не меняет расстояния между Землей и Солнцем. Это также не влияет на расстояние между атомами.

Расширение Вселенной частично вызвано Большим взрывом, а частично – темной энергией. Такое расширение не следует рассматривать как разлетающиеся друг от друга звезды в статической ткани пространства-времени. Вместо этого звезды более или менее статичны относительно ткани пространства-времени, которая сама расширяется.

Иногда можно услышать вопрос: «Где находится центр расширения Вселенной?» Этот вопрос имеет смысл только в том случае, если все звезды улетали бы из какой-то центральной точки. Поскольку расширение – это само пространство, центра у него нет.

Было установлено несколько примечательных особенностей расширения Вселенной.

Во-первых, хотя все далекие галактики удаляются, ни Земля, ни какая-либо другая точка в космосе не находится в центре Вселенной. Скорее, все удаляется от всего остального, и центра нет.

Во-вторых, в локальном масштабе гравитация преобладает над космологическим расширением и удерживает материю вместе. Масштаб, в котором это происходит, на удивление велик – даже целые скопления галактик сопротивляются расширению и держатся вместе.

В-третьих, неправильно думать о галактиках и скоплениях галактик, удаляющихся друг от друга «через» пространство. Более точная картина – это само пространство, расширяющееся и уносящее с собой все объекты.

Представьте себе бесконечный лист бумаги с сеткой из квадратов в один сантиметр, нарисованный на его поверхности, и другой бесконечный лист с сеткой из квадратов в два сантиметра.

Второй лист расширяется относительно первого, но нет центра расширения. Планетные системы не расширяются, несмотря на существование в расширяющейся Вселенной, из-за связывающей силы гравитации. Фактически, даже галактики обладают достаточной гравитацией, чтобы противостоять расширению.

Только когда вы дойдете до уровня, когда взаимное гравитационное притяжение незначительно – на межгалактический уровень, становится очевидным расширение Вселенной. Точно так же электроны в атомах не расходятся, несмотря на расширение Вселенной.

Все предметы на Земле не расширяются. Этот факт является причиной того, что мы в первую очередь можем обнаружить расширение Вселенной. Если бы мы расширялись с той же скоростью, что и галактики, мы бы никогда не открыли расширение Вселенной.

При этом выражение о том, что гравитация локально преодолевает расширение Вселенной, несколько упрощено. Пространство-время в космологическом масштабе довольно сложно.

Более точным утверждением было бы то, что где-то рядом с веществом (в группах галактик) пространство-время изгибается так, чтобы вызывать притяжение объектов, и мы называем это притяжение гравитацией; но вдали от материи (между группами галактик) пространство-время естественным образом расширяется само по себе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Как и куда расширяется вселенная?

Я думаю многие слышали о том, что Вселенная расширяется. У моих читателей возникает множество вопросов связанных с этим. В этой статье я постарался ответить на наиболее типичные из них.

Как работает расширение вселенной?

Когда мы смотрим на отдаленные объекты, мы можем заметить, что они отдаляются от нас, при этом чем дальше от нас находится объект, тем быстрее он отдаляется. К примеру объекты находящиеся от нас на расстоянии 13.8 миллиардов световых лет ( сфера Хаббла ) отдаляются от нас со скоростью света, а объекты находящиеся еще дальше – отдаляются быстрее скорости света!

Казалось бы происходит нарушение теории относительности, которая запрещает сверхсветовое движение, но на самом деле это не так. Так отдаленные галактики отдаляются от нас не за счет собственного движения, а за счет того, что между нами и ними пространство расширяется настолько быстро, что для расстояние увеличивается быстрее скорости света.

Почему отдаленные галактики удаляются быстрее?

Потому, что пространство расширяется везде и повсеместно равномерно во всех точках. К примеру если во вселенной каждый метр пространства увеличится на 1 сантиметр за 1 секунду, то тогда объекты расположенные на расстоянии 1 километр друг от друга отдалятся за 1 секунду друг от друга на 10 метров. А на расстоянии 100 километров — на 1000 метров. А на расстоянии 1000 километров — на 10 000 метров и так далее — чем больше расстояние между объектами, тем больше пространства между ними возникает за единицу времени.

Почему все галактики удаляется от нас? Значит ли это, что мы находимся в центре расширения? В центре вселенной? Нет, не значит. Так как пространство расширяется повсеместно и равномерно то какую бы галактику вы не выбрали, как точку обзора, из нее все будет выглядеть так, как будто это она находится в центре расширения, но по сути никакого центра расширения просто нет.

На расстоянии примерно 46.5 миллиардов световых лет находится граница наблюдаемой вселенной. Все что находится за ней мы никогда не сможем увидеть. Просто потому, что фотоны испущенные объектами находящимися за границей наблюдаемой вселенной никогда не достигнут нас — пространство между ними и нами будет возникать быстрее, чем фотоны будут успевать преодолевать его. Это расстояние еще называют горизонтом частиц .

Куда расширяется вселенная?

Теперь возникает следующий вопрос – куда же расширяется вселенная? Ответ на него донельзя прозаичен – никуда. Все дело в том, что вселенная бесконечна и не имеет границ. Более того вселенная всегда была бесконечна, даже в момент Большого Взрыва. Когда физик или астроном говорит, что в момент большого взрыва вселенная была сжата до микроскопического размера речь идет о размерах наблюдаемой вселенной, а не всей вселенной.

Источник

Почему Вселенная расширяется?

В момент Большого Взрыва Вселенная находилась в бесконечно малой точке. После Взрыва она начала постоянно расширяться, и делает это до сих пор. Почему?

Ну, тут действует принцип от обратного, или простейший логический довод: если бы она не расширялась, то вся Вселенная так бы и осталась в одной точке. Но это не так — значит, Вселенная расширяется.

Можно дать и более аргументированный ответ: расширение Вселенной происходит из-за тёмной энергии — загадочного вещества, о котором мы пока что мало что знаем. Чем больше тёмной энергии скапливается в одном месте — тем быстрее происходит расширение в этом месте.

Куда вообще расширяется Вселенная?

Это, скорее, риторический вопрос. Легко представить расширение Вселенной через модель пирожка с изюмом — сами изюминки отдаляются друг от друга, пока пирожок печётся в духовке

Читайте также:  Результаты конкурса моя вселенная 2021

Каких-то чётких границ у Вселенной нет — есть лишь ткань пространства-времени, а за её пределами ничего нет — ни атомов, ни энергии, даже нет времени. Как дать определение тому, чего не существует? Мы не сможем даже выйти за пределы Вселенной — там отсутствуют даже физические законы.

Расширение Вселенной — это «растягивание» пространственно-временной ткани, поэтому все галактики удаляются друг от друга.

Ускоряется ли её расширение или замедляется?

Ответ тут дать уже сложнее. Существует так называемый закон Хаббла, описывающий расширение Вселенной. В нём присутствует некий коэффициент, позволяющий связать расстояние до объекта с его удалением от Земли — постоянная Хаббла. Так вот, во всех точках пространства эта постоянная одинакова, но с течением времени она изменяется — и каждую секунду она становится всё меньше и меньше.

И это логично — в первые секунды Большого Взрыва Вселенная расширялась в десятки тысяч раз быстрее, чем сейчас — это мы можем узнать из реликтового излучения, оставшегося в эти первые секунды.

Из-за того, что объекты всё больше отдаляются друг от друга, расширение Вселенной замедляется. Но оно не будет замедляться вечно, Вселенная никогда не остановится увеличиваться в размерах. Одна из самых распространённых теорий по этому поводу — модель Леметра, согласно которой Вселенная сначала замедлит своё расширение, а потом ускорит:

Могут ли объекты отдаляться друг от друга быстрее скорости света?

Если одна галактика будет двигаться со скоростью света от нашей, Млечного Пути, которая тоже движется с той же скоростью, то будет ли она двигаться вдвое быстрее скорости света?

Формально да, и теория относительности не будет нарушена, ведь о перемещении в пространстве речи не идёт. Само пространство расширяется! Это можно сравнить с варп-двигателем — гипотетической моделью двигателя, который спереди сужает пространство, а сзади расширяет, таким образом путешествуя быстрее света.

Получается, мы никогда не увидим другой галактики, если скорость расширения превысит скорость света.

Сфера Хаббла

Сфера Хаббла — это так называемая область вокруг нас, которую мы в состоянии наблюдать. Дальше неё объекты удаляются от нас быстрее скорости света — и мы никогда их не увидим
🙁

И хотя с расширением Вселенной эта сфера также растёт, объекты начинают удаляться от неё всё дальше и дальше. Когда-нибудь свет от других галактик перестанет приходить к нам, и будущие разумные формы жизни будут принимать за всю Вселенную лишь наш Млечный Путь. Грустно всё это.

Понравилась статья? ставьте палец вверх и подписывайтесь на мой канал — там ещё множество научных тем: космос, химия, физика, технологии,изобретения и многое другое!

Источник

Как открывали расширение Вселенной

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера–Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150–1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923–1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера–Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.

Читайте также:  10 самых могущественных ситхов во вселенной звездных войн

Хаббл не знал, как эти закономерности связаны друг с другом, но что об этом говорит сегодняшняя наука?

Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера–Физо справедлива только для небольших смещений спектра.

А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V = Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить, только если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.

Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1 + z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна—де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450 000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной положительной кривизны. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной.

В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.

Читайте также:  Что находиться за вселенной ответ ученого

Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями.

Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера–Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

Источник

Adblock
detector