Меню

Основной источник энергии солнце какая экосистема

Энергетические типы экосистем

Энергия — наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем: 1) движимые Солнцем, малосубсидируемые; 2) движимые Солнцем, субсидируемые другими естественными источниками; 3) движимые Солнцем и субсидируемые человеком; 4) движимые топливом.

В большинстве случаев могут использоваться и два источника энергии — Солнце и топливо.

Природные экосистемы, движимые Солнцем, малосубсидируемые — это открытые океаны, высокогорные леса. Все они получают энергию практически только от одного источника — Солнца и имеют низкую продуктивность. Ежегодное потребление энергии оценивается ориентировочно в 10 3 -10 4 ккал-м 2 . Организмы, живущие в этих экосистемах, адаптированы к скудному количеству энергии и других ресурсов и эффективно их используют. Эти экосистемы очень важны для биосферы, так как занимают огромные площади. Океан покрывает около 70 % поверхности земного шара. По сути дела, это основные системы жизнеобеспечения, механизмы, стабилизирующие и поддерживающие условия на «космическом корабле» — Земле. Здесь ежедневно очищаются огромные объемы воздуха, возвращается в оборот вода, формируются климатические условия, поддерживается температура и выполняются другие функции, обеспечивающие жизнь. Кроме того, без всяких затрат со стороны человека здесь производится некоторое количество пищи и других материалов. Следует сказать и о не поддающихся учету эстетических ценностях этих экосистем.

Природные экосистемы, движимые Солнцем и субсидируемые другими естественными источниками — это экосистемы, обладающие естественной плодородностью и производящие излишки органического вещества, которые могут накапливаться. Они получают естественные энергетические субсидии в виде энергии приливов, прибоя, течений, поступающих с площади водосбора с дождем и ветром органических и минеральных веществ и т. п. Потребление энергии в них колеблется от 1-10 4 до 410 4 ккал-м’ 2 -год 1 . Прибрежная часть эстуария типа Невской губы — хороший пример таких экосистем, которые более плодородны, чем прилегающие участки суши, получающие то же количество солнечной энергии. Избыточное плодородие можно наблюдать и в дождевых лесах.

Экосистемы, движимые Солнцем и субсидируемые человеком — это наземные и водные агроэкосистемы, получающие энергию не только от Солнца, но и от человека в виде энергетических дотаций. Высокая продуктивность их поддерживается мышечной энергией и энергией топлива, которые тратятся на возделывание, орошение, удобрение, селекцию, переработку, транспортировку и т. п. Хлеб, кукуруза, картофель «частично сделаны из нефти». Самое продуктивное сельское хозяйство получает энергии примерно столько же, сколько самые продуктивные природные экосистемы второго типа. Их продукция достигает приблизительно 50 000 ккал-м’ 2 -год 4 . Различие между ними заключается в том, что человек направляет как можно больше энергии на производство продуктов питания ограниченного вида, а природа распределяет их между многими видами и накапливает энергию на «черный день», как бы раскладывая ее по разным карманам. Эта стратегия называется «стратегией повышения разнообразия в целях выживания».

Индустриально-городские экосистемы движимые топливом — венец достижений человечества. В индустриальных городах высококонцентрированная энергия топлива не дополняет, а заменяет солнечную энергию. Пищу — продукт систем, движимых Солнцем, — в город ввозят извне. Особенностью этих экосистем является огромная потребность плотно населенных городских районов в энергии — она на два-три порядка больше, чем в первых трех типах экосистем. Если в несубсидируемых экосистемах приток энергии колеблется от 10 3 до 10 4 ккал-м 2 год -1 , а в субсидируемых системах второго и третьего типа — от 10 4 до 4-10 4 ккал-м 2 -год -1 , то в крупных индустриальных городах потребление энергии достигает нескольких миллионов килокалорий на 1 м 2 : Нью-Йорк — 4,8-10 6 , Токио — 3-10 6 , Москва — 10 6 ккал-м 2 -год -1 .

Потребление энергии человеком в городе в среднем составляет более 80 млн ккал-год 4 ; для питания ему требуется всего около 1 млн ккал-год 4 , следовательно, на все другие виды деятельности (домашнее хозяйство, транспорт, промышленность и т. д.) человек расходует в 80 раз больше энергии, чем требуется для физиологического функционирования организма. Разумеется, в развивающихся странах положение несколько иное.

По мере углубления энергетического кризиса и роста цен на горючее люди, видимо, будут больше интересоваться использованием солнечной энергии и разрабатывать технологии ее концентрации. Возможно, в будущем и возникнет новый тип экосистем — город, движимый энергией не только топлива, но и Солнца.

Читайте также:  Является солнце его диаметр равен

В своем развитии человеческое общество прошло через все четыре типа описанных выше экосистем. Охотники и собиратели растений жили в природных экосистемах, движимых только Солнцем. Люди достигали наибольшего процветания в системах с естественными энергетическими субсидиями: в прибрежных районах моря и речных бассейнах. С развитием сельского хозяйства, когда человек усовершенствовал свое умение выращивать растения, одомашнивать животных и получать урожаи с помощью дополнительной мышечной энергии, продуктивность среды сильно возросла. Но в течение многих веков основными источниками энергии для человека оставались растения и животные. Города, деревни, соборы строились из дерева с использованием физического труда животных и человека. Этот долгий период можно назвать эрой мышечной силы.

Затем наступила продолжающаяся и сейчас эра горючих ископаемых, которые обеспечили такой обильный приток энергии, что население Земли стало удваиваться почти каждые полвека. Работа механизмов, приводимых в движение бензином и электричеством, постепенно почти полностью заменила физический труд человека в развитых странах.

Со временем стала использоваться и атомная энергия. Казалось вероятным, что после исчерпания топлива начнется эра атомной энергии. Но пока на «откачивание» неупорядоченности, связанной с этим источником, т. е. на переработку отходов, приходится тратить столько усилий и энергии, что будущее атомной энергетики неясно. Пока не отработан и не согласован весь цикл получения ядерной энергии — от добывания сырья до устранения отходов и не найдены лучшие способы извлечения энергии атома, наступление атомной эры по крайней мере откладывается.

Энергия и деньги

Еще на заре цивилизации возникли деньги. Деньги – это мера стоимости товаров, они являются непосредственным представителем абстрактного труда или выполненной работы.

Приравненные к деньгам стоимости всех товаров приобретают одинаковое выражение и становятся сравнимы между собой.

Потоки денег и энергии тесно взаимосвязаны: поток денег противоположен потоку энергии. Когда продукты питания избыточны, они превращаются в товар. После продажи товара в обратном направлении возникает поток денег.

Соотношение энергии и денег определяется количеством энергии, вложенной в каждый обращающийся рубль. Чем больше энергии затрачено, тем выше реальная стоимость рубля.

В каждый данный момент существует некоторое среднее отношение суммы обращающихся денег к энергетическому потоку. Например, если в стране объем расходуемых денег ежегодно составляет около 1,4 трлн (10 12 ) долларов и используется за год 35-10 15 ккал энергии, то на 1 доллар приходится 25000 ккал. Естественно, это соотношение неодинаково в различных частях энергетической системы, но можно оценить его для системы в целом. Данное соотношение позволяет показать, какое количество энергии используется для поддержания деловой активности.

Оценка работы природных экосистем — еще не решенная проблема. Деньги могут участвовать в расчетах только после того, как природные ресурсы превращены человеком в товар, работа же природы, создающей ресурсы, при этом не оценивается. Деньгами оцениваются только труд человека и затраты по вылову, переработке и продаже рыбы. Работа водоема по производству рыбы обычно не оценивается деньгами. Но общая стоимость полезной работы водоема, рассчитанная посредством энергетического эквивалента денег, окажется выше стоимости собираемых в нем продуктов. Энергия и работа, выполняемая для поддержания биомассы растений и животных в водоеме, очистки и повторного использования воздуха и воды, остаются вне денежной системы. Было высчитано, что если бы оценить стоимость всей полезной работы водоема, выполняемой в течение года, в универсальной «энергетической валюте», а потом перевести в деньги, то 1 га плодородного водоема стоил бы в десятки раз больше, чем снимаемый с него годовой урожай.

Большинство экологов и экономистов согласны с тем, что необходимо преодолеть разрыв между рыночными и нерыночными ценностями, так как обе категории ценностей тесно взаимосвязаны.

Экономическая теория в соединении с правильно понимаемой энергетической теорией позволяет включить «бесплатную» работу природы в разряд экономических ценностей и таким образом повысить экономические системы до уровня экологических.

Мировая экономика в конечном счете зависит от основных природных экосистем — морских, лесных, сельскохозяйственных. По мере того как эти ресурсы истощаются или подвергаются стрессовым воздействиям, начинает страдать и мировая экономика: товары и услуги становятся все дефицитнее, их производство все дороже, что приводит к инфляции во всем мире.

Читайте также:  Юбка солнце коричневая с чем носить

Вопросы для самоконтроля:

1. Приведите примеры действия двух законов термодинамики в экосистемах.

2. Приведите примеры низкоэнтропийных и высокоэнтропийных экосистем; какие системы более жизнестойкие?

3. Как превращается энергия в цепи генерации электричества?

4. Как можно характеризовать качество энергии?

5. Дайте определение эксергии.

6. Во сколько раз рабочий потенциал ископаемого топлива больше рабочего потенциала солнечного света?

7. Чем характеризуется эффективность энергии в экосистемах?

8. Почему природные системы могут сохранять упорядоченность?

9. При каких видах работ целесообразно использовать солнечную энергию?

10. Какие виды энергии обеспечивают работу автомобиля?

11. Как превращается энергия в пищевой цепи? Нарисуйте схему.

12. Какие трофические уровни в пищевой цепи занимают продуценты и консументы первого, второго и третьего порядков?

13. Какой трофический уровень занимает человек?

14. Какая часть солнечной энергии аккумулируется зелеными растениями?

15. Как формулируется «правило пирамиды»? Чем отличаются пирамиды энергии от пирамид чисел и биомассы?

16. Как изменяется эффективность агроэкосистем с ростом энергозатрат на их поддержание?

17. Дайте определения валовой, чистой и вторичной продукции экосистем.

18. В каком виде поступают энергетические дотации в природные и искусственные экосистемы?

19. Перечислите энергетические типы экосистем.

20. Какой период в развитии цивилизации называется эрой мышечной силы?

21. Как взаимосвязаны потоки энергии и потоки денег?

Вопросы для самостоятельного изучения темы:

Источник

Основной источник энергии солнце какая экосистема

Изучая поток энергии в экосистеме, т. е. ее энергетику, пользуются соответствующими физическими единицами. В системе СИ количество энергии измеряют в джоулях (Дж), но до сих пор часто употребляются калории. Определение этих единиц дано в таблице, где приводится также их запас в некоторых пищевых продуктах и организмах (их энергоемкость, или калорийность), а также суточные потребности в энергии трех групп животных (их энергозатраты).

Итак, Солнце — практически единственный исходный источник энергии для экосистем. Из того количества солнечной энергии, которое достигает Земли, примерно 40% сразу же отражается облаками, пылью в атмосфере и поверхностью планеты, не давая никакого эффекта. Еще 15% поглощается и превращается в тепловую энергию атмосферой, главным образом озоном в стратосфере и парами воды.

Озоновый экран поглощает практически все коротковолновые ультрафиолетовые лучи, что очень важно, поскольку они вредны для живого. Оставшиеся 45% энергии «эффективно» достигают поверхности Земли. В среднем это соответствует примерно 5 • 106 кДж м -2 год -1 , но в каждом конкретном месте количество получаемой энергии зависит от географической широты, климата и ориентации участка относительно сторон горизонта (экспозиции). Лишь менее половины падающих на планету лучей относятся к видимой части спектра, т. е. к фотосинтетически активной радиации (ФАР).

Однако даже при оптимальных условиях только около 5% поступающей солнечной энергии (10% ФАР) используется в процессе фотосинтеза и запасается в валовой первичной продукции (ВПП). Более типичная доля для хороших условий — 1% обшей получаемой Землей радиации (2% ФАР), а в среднем по биосфере — 0,2% ее суммарного количества. Чистая первичная продукция (ЧПП), т. е. прирост органической массы в ходе фотосинтеза после вычета расходов автотрофов на собственное дыхание, варьирует от 50 до 80% ВПП (разд. 10.3.5).

Итак, в среднем на планете фиксируется в органических веществах лишь 0,1% падающей на нее солнечной энергии. Наземные экосистемы, занимающие 30% площади Земли, улавливают половину этого количества. В пересчете на их короткий вегетационный период для зерновых культур характерны максимальные величины ВПП и ЧПП, но при нормальных полевых условиях устойчивого подъема интенсивности фотосинтетической фиксации выше определенного предела достичь не удается.

Источник

Энергетика и продукция экосистемы. Основным (и практически единственным) источником энергии в экосистеме является солнечный свет

Основным (и практически единственным) источником энергии в экосистеме является солнечный свет. Блок-схема потоков веществ и энергии в экосистеме представлена на рис. 3.

Поток энергии направлен в одну сторону, часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более новую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему покидает её в виде низкокачественной тепловой энергии (тепловой сток). Следует отметить, что только около 2 % поступающей на поверхность земли энергии усваивается автотрофными организмами, большая часть (до 98%) рассеивается в виде тепловой энергии.

Читайте также:  Чем вредно солнце для онкобольных

Рис.3. Схема потоков веществ и энергии в экосистеме.

Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но её нельзя использовать вторично. В отличие от энергии, элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т.д.), и вода могут использоваться многократно. Эффективность повторного использования и размеры импорта и экспорта элементов питания сильно варьируют в зависимости от типа экосистемы.

На функциональной схеме сообщество изображено в виде пищевой сети, образованной автотрофами и гетеротрофами, связанными между собой соответствующими потоками энергии, круговоротами биогенных элементов.

Рис. 4. Поток энергии в пищевой цепи:

ОПЭ — общее поступление солнечной энергии; НЭ — неиспользованная экосистемой энергия; С — энергия, поглощенная растениями; Н- часть энергии (с первичной продукцией), использованная организмами трофических уровней; СН — часть поглощенной энергии, рассеянная в тепловой форме; Д1 Д2, Д3 -потери энергии на дыхание; Э — потери вещества в форме экскрементов и выделений; Пв — валовая продукция продуцентов; П1 — чистая первичная продукция; П2 и П3 — продукция консументов; в круге показаны биоредуценты -деструкторы мертвой органики.

Трофическая цепь в биогеоценозе есть одновременно цепь энергетическая, т. е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям (рис. 4).

Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частично идущую на построение собственного органического вещества и связывающуюся в молекулах соответствующих химических соединений, а частично расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, ускользания от врагов и т. п.

Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т. е. с ее потерями и возрастанием энтропии. Понятно, что это рассеивание все время компенсируется поступлением энергии от Солнца.

В процессе жизнедеятельности сообщества создается и расходуется органическое вещество. Это значит, что каждая экологическая система обладает определенной продуктивностью.

Продуктивность экологической системы — это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое может быть использовано в качестве пищи. Различают разные уровня продуцирования органического вещества: первичная продукция, создаваемая продуцентами в единицу вре­мени, и вторичная продукция — прирост за единицу времени массы консументов. Первичная продукция подразделяется на валовую и чистую продукцию. Валовая первичная продукция — это общая масса валового органического вещества, создавае­мая растением в единицу времени при данной скорости фотосинтеза, включая и траты растения на дыхание — от 40 до 70% от валовой продукции. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами. Вторичная продукция не делится уже на валовую и чис­тую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной ранее созданной продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см 3 в сыром или сухом виде, или в энергетических единицах — в калориях, джоулях и т.п. Если скорость изъятия биомассы консументами отстает от скорости прироста растений, то это ведет к постепенному приросту биомассы продуцентов и к избытку мертвого органического вещества. Последнее приводит к заторфовыванию болот и зарастанию мелких водоемов. В стабильных сообществах практически вся продукция тратится в трофических сетях, и биомасса остается практически постоянной.

Дата добавления: 2016-01-18 ; просмотров: 651 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Adblock
detector