ЭТАПЫ ВОЗНИКНОВЕНИЯ ВСЕЛЕННОЙ
1. Сингулярное состояние
2. Квантовый переход в конечномерное состояние
3. Инфляция – самопроизвольное «раздувание»
4. Смесь вещесва и и антивещества.
5. Аннигиляция вещества и антивещества и возникновение реликтового излучения
6. Образование ядер (в основном водорода и дейтерия)
7. Образование атомов водорода и дейтерия
8. Формирование галактик и звезд
9. Возникновение все новых звезд и их развитие вплоть до коллапса.
Раздувание Вселенной
Авторы: Научно-исследовательская группа WMAP, НАСА
Перевод: Д.Ю.Цветков
Пояснение: В настоящее время Вселенная постепенно расширяется. Но ее начальное расширение было почти невозможно быстрым — вероятно, она выросла из флуктуаций квантовых масштабов за одну триллионную секунды. Этот космологический сценарий, известный как теория инфляции, теперь подтверждается результатами анализа данных, полученных за три года космическим аппаратом WMAP. Приборы на борту WMAP регистрируют космическое реликтовое излучение — послесвечение, дошедшее до нас из ранней Вселенной. Удивительные успехи WMAP в изучении первой триллионной доли секунды и выборе наиболее вероятного сценария инфляции обусловлены его способностью осуществлять беспрецедентно точные измерения свойств реликтового излучения. Эти едва уловимые свойства объясняются условиями в ранней Вселенной и связаны с первыми моментами ее существования. Показанная здесь диаграмма схематически изображает всю историю Вселенной, продолжавшуюся 13.7 миллиардов лет (плюс одна триллионная секунды . ) от квантовых масштабов до формирования звезд, галактик, планет и самого аппарата WMAP.
БОЛЬШОЙ ВЗРЫВ
первые мгновения вселенной. Чтобы воссоздать историю Вселенной, особенно в самые первые ее мгновения, астрономы прибегли к физике элементарных частиц. Эта область науки изучает основные составляющие материи, не только протоны, нейтроны и электроны, но и частицы с более «экзотическими» названиями, такие, как мезоны, бозоны, нейтрино и т. д., некоторые из них существуют лишь короткие мгновения внутри ускорителя частиц, в котором можно воссоздать, хотя бы частично, условия, которые были в первоначальной Вселенной.
К несчастью, научные знания, которыми мы сегодня располагаем, не позволяют проникнуть в то мгновение, когда произошел Большой взрыв, а также уловить ту долю секунды, которая была до «нуля». Законы физики не в состоянии обьяснить, что произошло в момент между Большим взрывом и 10 -43 секунды (этот кратчайший период называется временем Планка), как, впрочем, не в состоянии создать и теорию самого Большого взрыва. В мгновение 10 -43 с Вселенная была удивительно маленькой, горячей и плотной. В следующую долю секунды она сильно переменилась: начала быстро расширяться из бесконечно малых размеров до размеров грейпфрута. Из-за столь быстрого расширения, известного как «вздутие» (см. с. 1 88), Вселенная начала выделять в совокупности энергию и элементарные частицы, такие, как кварки и антикварки.
До того момента, когда Вселенная прожила десятитысячную долю секунды, из кварков шел процесс образования протонов и нейтронов — частиц, из которых состоят ядра атомов.
ПОСЛЕ БОЛЬШОГО ВЗРЫВА. Через секунду после Большого взрыва температура снизилась до 10 млрд. градусов; во Вселенной преобладали излучение и такие легкие частицы, как электроны и их античастицы, позитроны. Антиматерия похожа на обычную материю с той только разницей, что частицы антиматерии имеют противоположный частицам обычной материи заряд, когда они встречаются, они тут же взаимоуничтожаются (это явление называется аннигиляцией), выделяя энергию. Это происходит и с парой электрон — позитрон, которые аннигилируют, образуя два гамма-кванта. Тем не менее после этой фазы должен образоваться избыток материи по сравнению с антиматерией, потому что все, что мы сегодня наблюдаем во Вселенной, состоит из материи, а антиматерия отсутствует. Чуть больше, чем через минуту после Большого взрыва протоны и нейтроны начали соединяться между собой, образуя ядра гелия, состоящие из двух протонов и двух нейтронов. Большая часть ядер гелия, существующих на сегодняшний день во Вселенной, образовалась в первую четверть часа после первоначального взрыва.
В последующие 300 000 лет значительных изменений не происходило. Значительное изменение произошло, когда Вселенная, расширившись, остыла до температуры 3300 °С. С этого момента электроны стали соединяться с ядрами водорода и гелия, образуя первые атомы. То есть произошло своего рода рассредоточение космического облака, и впервые Вселенная стала прозрачна для света.
Остальное — «новейшая» история. В следующие миллионы лет материи стало прибавляться из-за силы притяжения, и приблизительно через миллиард лет после Большого взрыва начали образовываться первые звезды и первые галактики, которые сегодня, через 12—14 млрд. лет после Большого взрыва, мы наблюдаем как эволюционирующие объекты.
ТЕОРИИ, АЛЬТЕРНАТИВНЫЕ ТЕОРИИ БОЛЬШОГО ВЗРЫВА. Кроме теории Большого взрыва, развивались и другие космологические модели, объясняющие происхождение Вселенной. Наиболее известная из них — теория Стационарной Вселенной, предложенная в 1948 году Германом Бонди, Томасом Голдом и Фредом Хойлом, согласно которой галактики удаляются друг от друга по закону Хаббла, но пространство между двумя галактиками остается в среднем таким же, так что в целом Вселенная неподвижна. Эта теория предполагает, что в искривленных пространствах, оставшихся от галактик, образуется такое бесконечное количество новых, чтобы поддерживать в стационарном состоянии галактическую популяцию. Согласно так называемому совершенному космологическому принципу Вселенная в среднем однородна как в пространстве, так и во времени и не развивалась из «нулевой» точки.
Такой процесс бесконечного образования материи несовместим с современными законами физики, хотя ритм предположительного образования столь незначительный, что его трудно воссоздать в лабораторных условиях. На количественном уровне возникает вопрос появления из ничего атома водорода 8 каждом кубическом дециметре раз в миллиард лет. Наблюдая за Вселенной на микроволновом уровне, было открыто, что во все стороны идет достаточно однородное излучение, известное как радиационный космический фон. Космологи объясняют его как эхо Большого взрыва, но для этого еще нужны основательные доказательства.
ОТКРЫТИЯ.В 1948 году американский физик русского происхождения Джордж Гамов и его молодые коллеги Ральф Эльфер и Роберт Герман выдвинули теорию, что Вселенная возникла 10—20 млрд. лет назад при очень высоких температуре и плотности, как и предполагает теория Большого взрыва, тогда расширение должно охладить излучение до 5 градусов выше абсолютного нуля (-273,15 °С), а его спектр будет выглядеть как спектр «черного тела», то есть аналогично излучению люоого тела, находящегося в полном термическом равновесии пои данной температуре. при данной температуре.
Любопытно, что это излучение было открыто совершенно случайно в 1964 году, о чем на следующий год сообщили Арно Пензиас и Роберт Вильсон, работавшие в американской «Белл телефон лабораторис». Ученые вели работу с помощью антенны, построенной для связи с телекоммуникационными спутниками «Эко», когда неожиданно обнаружили фоновый электрический шум, который непрерывно испускался во всех направлениях. Поначалу они подумали, что это помехи, наведенные близко расположенным передатчиком. Но проверка окрестных территорий не обнаружила ни одного источника микроволнового излучения. Исследователи пришли к заключению, что причина шума в излучении, видимо, равномерно поступающем из космоса, а точнее — из далеких недр Вселенной от источника с реальной температурой около 3,5 °К , а длина волны составляет 7 ел. Температура была выше теоретически ожидаемой, и поэтому исследователи не торопились с обнародованием своего открытия.
За открытие фонового космического излучения Пензиас и Вильсон получили в 1978 году Нобелевскую премию в области физики вместе с группой астрономов Принстонского университета — Диком, Пибблзом, Роллом и Уилкинсом, которые в том же 1964 году занимались радиоастрономическими исследованиями, как раз пытаясь обнаружить излучение.
ПРОИСХОЖДЕНИЕ ФОНОВОГО КОСМИЧЕСКОГОИЗЛУЧЕНИЯ. Согласно теории Большого взрыва, когда температура первородной Вселенной опускается примерно до
Длина волны испущенного излучения сдвигается к красному с расширением Вселенной, пока не достигает диапазона микроволн. Поэтому температура излучения черного тела, обратно пропорциональная длине волны, уменьшается по достижении примерно 3 °К. Слабая вспышка излучения, наблюдаемая сегодня, — это информация о давно прошедших событиях, потому что свет из галактики вышел очень давно, когда возраст Вселенной составлял 300 или 500 тысяч лет, а плотность была 1000 атомов на см 3 .
ХАРАКТЕРИСТИКИ. Пензиас И Вильсон открыли, что интенсивность излучения одинакова во всех направлениях с погрешностью в 3%. Такая однородность была присуща и первородной Вселенной. Одна ко нам известно, что Вселенная неоднородна: есть галактики и скопления галактик, расположенные вокруг огромных пустых «сфер».
Неоднородность Вселенной, наступившая по прс ва, должна наложить отпечаток и на фоновое излучение.
Поэтому, чтобы обнаружить действительную деформацию, самое главное — с особой точностью измерить спектр этого излучения. Чтобы избежать искажения приходящей на землю волны сантиметрового диапазона, вносимого поглощением и испусканием излучения молекулами земной атмосферы, 18 ноября 1989 года НАСА запустило спутник «Кобе» [Cosmic microwave Background Explorer). Уже через 9 мин после запуска были получены прекрасный спектр черного тела, никогда раньше не наблюдавшегося в природе, и еще одно подтверждение теории Большого взрыва, потому что только в столь особых условиях космическое излучение может «преданно» следовать закону излучения черного тела. Полученная погрешность составила 0,005%. Еще более интересное открытие было сделано в 1 992 году, когда на «Кобе» был помещен детектор. Наблюдались небольшие колебания по отношению к среднему излучению, равные почти сотой доле, которые соответствуют более горящей зоне. Обнаруженные колебания температуры составили порядка 0,000030° при средней температуре 2,73 °К. Согласно утверждениям космологов, такие флуктуации возникают во Вселенной из-за неоднородности, приводящей впоследствии к образованию галактик. Для ее изучения разрабатываются и реализуются различные
задачи для спутников.
На трех рисунках изображены интенсивности излучения различных длин волн в зависимости от направления. Результаты получены спутником «Кобе».
Расширение Вселенной
На сегодняшний день теория Большого взрыва многие проблемы оставляет без ответа. Похоже, что первородная Вселенная могла «передать» информацию относительно интенсивности фонового космического излучения, достигнув своего рода равновесия в каждой своей части. Время передачи такой информации в каждый уголок Вселенной, переносясь со скоростью сеета (максимально возможная в природе скорость), превышает возраст самой Вселенной. Здесь имеется явное противоречие.
А вот второй вопрос относится к средней плотности материи во Вселенной. И действительно, по общей теории относительности предполагается, что, если плотность оказывается ниже определенного критического значения, Вселенная обречена но расширение, даже если процесс будет сдерживаться гравитационной силой, она только замедлит процесс увеличения ее размеров. Если плотность окажется выше критического значения, Вселенная подойдет к Большому сжатию гигантскому финальному коллапсу. Имеются данные, говорящие о том, что плотность современной Вселенной очень близка к критическому значению. Но существует ряд теорий, утверждающих, что небольшое начальное отклонение от этого значения впоследствии увеличивается, и сегодня его легко наблюдать. Для подтверждения полученных на сегодняшний день сведений следует предположить, что изначальная плотность отклоняется от критической на 1 О» 60 , то есть крайне незначительно.
«ВЗДУТИЕ». Чтобы объяснить эту непоследовательность, физик-теоретик Алан Гут в начале 1980-х годов предложил так называемую теорию расширения Вселенной «вздутием*(inflation). Ha ее основе было выдвинута гипотеза, что у Вселенной вскоре после рождения был кратчайший период, в который расширение в отличие от сегодняшнего темпа шло гораздо быстрее: размеры Вселенной увеличивались экспоненциально. Процесс «вздутия», согласно Гуту, начался приблизительно на 10
34 секунде после Большого взрыва и продолжался до 10″ 37 секунды, удваивая размеры Вселенной каждые 10
34 с. В этот кратчайший отрезок времени Вселенная увеличила свои размеры примерно в 10 30 раз. Это быстрое расширение привело к мгновенному «растягиванию» и неоднородности структуры новорожденной Вселенной. Поэтому возможно, что до фазы «вздутия» фотоны пересекали Вселенную из конца в конец, поддерживая ее однородность. Это могло бы объяснить, почему фоновое космическое излучение оказывается столь однородным. В результате «вздутия» плотность Вселенной могла бы достичь критического значения.
СХЕМА РАЗВИТИЯ ВСЕЛЕННОЙ
СТОЛКНОВЕНИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ ИМИТИРУЮТ ПОВЕДЕНИЕ ВСЕЛЕННОЙ НА ЭТАПЕ СОСУЩЕСТВОВАНИЯ МАТЕРИИ И АНТИМАТЕРИИ
Эволюция Вселенной
Авторы: А. Кудлики ( Астрономический центр им. Н. Коперника ),
Ж. Еврард ( Мичиганский университет ) и др.,
Консорциум Вирго
Перевод: Козырева А.В.
Пояснение: Прокрутите картинку вправо (можно сделать это и дома). Вы увидите, как эволюционирует Вселенная. На сегодняшней картинке изображена эволюция целой Вселенной (. ), смоделированная с помощью компьютера. Далеко слева показано, как выглядела Вселенная вскоре после Большого Взрыва, спустя 10 миллиардов лет. Время на картинке течет слева направо, и видно, как Вселенная из первоначально однородной превращается во все более клочковатую. Вершина далеко справа — момент, в который мы живем. Самую большую часть Вселенной, которую мы можем наблюдать, показана справа от этой вершины. Эта искусственная Вселенная, которую ученые называют Хаббловским объемом, была смоделирована специально, чтобы показать, что человечество может увидеть, если будет использовать для наблюдений очень мощные телескопы. Сравнивая различные компьютерные расчеты с реальными наблюдениями, мы можем более точно судить о том, в какой Вселенной мы живем.
Источник