Звёздная величина (из Википедии)
Звёздная величина — числовая характеристика объекта на небе, чаще всего звезды, показывающая, сколько света приходит от него в точку, где находится наблюдатель.
Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.
Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.
В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:
где I — световой поток от объекта, C — постоянная.
Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.
Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.
Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:
- Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
- Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 10 1/2,5 =2,512 раза.
В наши дни видимая звёздная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.
Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)
- Визуальная звёздная величина (V или mv ) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
- Фотографическая или «синяя» звёздная величина (B или mp ) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
- Ультрафиолетовая звёздная величина (U) имеет максимум в ультрафиолете при длине волны около 350 нм.
Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.
- Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.
абсолютная
Абсолютная звёздная величина (M) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:
где d 0 = 10 пк ≈ 32,616 световых лет .
Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле
Абсолютная звёздная величина связана со светимостью следующим соотношением: где
и
— светимость и абсолютная звёздная величина Солнца.
Звёздные величины некоторых объектов
Объект | m |
Солнце | −26,7 |
Луна в полнолуние | −12,7 |
Вспышка Иридиума (максимум) | −9,5 |
Сверхновая 1054 года (максимум) | −6,0 |
Венера (максимум) | −4,4 |
Земля (глядя с Солнца) | −3,84 |
Марс (максимум) | −3,0 |
Юпитер (максимум) | −2,8 |
Международная космическая станция (максимум) | −2 |
Меркурий (максимум) | −1,9 |
Галактика Андромеды | +3,4 |
Проксима Центавра | +11,1 |
Самый яркий квазар | +12,6 |
Самые слабые звёзды, наблюдаемые невооружённым глазом | От +6 до +7 |
Самый слабый объект, заснятый в 8-метровый наземный телескоп | +27 |
Самый слабый объект, заснятый в космический телескоп Хаббла | +30 |
Объект | Созвездие | m |
Сириус | Большой пёс | −1,47 |
Канопус | Киль | −0,72 |
α Центавра | Центавр | −0,27 |
Арктур | Волопас | −0,04 |
Вега | Лира | 0,03 |
Капелла | Возничий | +0,08 |
Ригель | Орион | +0,12 |
Процион | Малый пёс | +0,38 |
Ахернар | Эридан | +0,46 |
Бетельгейзе | Орион | +0,50 |
Альтаир | Орёл | +0,75 |
Альдебаран | Телец | +0,85 |
Антарес | Скорпион | +1,09 |
Поллукс | Близнецы | +1,15 |
Фомальгаут | Южная рыба | +1,16 |
Денеб | Лебедь | +1,25 |
Регул | Лев | +1,35 |
Солнце с разных расстояний
Источник
Характеристика Солнца
Солнце – единственная звезда в нашей солнечной системе, являющаяся её центром и самым большим в ней объектом. 99,866% от всей массы солнечной системы приходиться на долю нашей звезды. Основная характеристика Солнца изложена в таблице 1.
Характеристика Солнца | |
---|---|
Видимая звёздная величина (V) | −26,74m |
Абсолютная звёздная величина | 4,83m |
Спектральный класс | G2V |
Средний диаметр | 1,392•10 9 м |
Экваториальный радиус | 6,9551•10 8 м |
Длина окружности экватора | 4,37001•10 9 м |
Полярное сжатие | 9•10 −6 |
Площадь поверхности | 6,07877•10 18 м 2 |
Объём | 1,40927•10 27 м 3 |
Масса | 1,9891•10 30 кг |
Средняя плотность | 1409 кг/м 3 |
Ускорение свободного падения на экваторе | 274,0 м/с 2 |
Эффективная температура поверхности | 5778 К |
Температура короны | |
Температура ядра | |
Светимость | 3,846•10 26 Вт |
Яркость | 2,009•10 7 Вт/м 2 |
Наклон оси (относительно плоскости эклиптики) | 7,25° |
Прямое восхождение | 286,13° |
Склонение | +63,87° |
Сидерический период | 25 дней 9 ч 7 мин 13 с |
Скорость вращения внешних видимых слоёв (на экваторе) | 7284 км/ч |
Солнце, сравнительно, молодая звезда, по спектральному классу G2V (жёлтый карлик). Возраст составляет где-то приблизительно 4,57 млрд. лет. Это самый мощный источник энергии во всей солнечной системе. Например, за секунду, наше Солнце выделяет где-то в миллион раз больше энергии, чем всё население Земли потребляет за год.
Солнце на 73,46% состоит из водорода (состав приведён в таблице 2). При условиях, которые царят на нашем светиле, происходит так называемая протон-протонная термоядерная реакция. Она сопровождается огромным выбросом энергии и тепла. Которые, за 8 минут, доходят до Земли, и мы видим нашу звезду такой, какая она есть сейчас.
Состав фотосферы Солнца | |
---|---|
Водород | 73,46% |
Гелий | 24,85% |
Кислород | 0,77% |
Углерод | 0,29% |
Железо | 0,16% |
Неон | 0,12% |
Азот | 0,09% |
Кремний | 0,07% |
Магний | 0,05% |
Сера | 0,04% |
Но не всё так гладко. При такой ядерной реакции водород «выгорает», превращаясь в гелий. Так что эволюция Солнца очевидна – оно будет расширяться, и достигнет орбиты Юпитера включительно, став красным гигантом. Но это отдельная тема для разговора.
Все термоядерные реакции на Солнце протекают в его ядре. Радиус солнечного ядра составляет где-то от 150 до 175 тысяч км. и температура равна 13,5 млн. К. Плотность вещества, находящегося в ядре, равна 150000 кг/м³. Для примера, самый плотный металл на Земле – осмий. Но его плотность в 6,6 раз ниже плотности солнечного ядра.
Энергия, которая выделяется из ядра проходит через так называемую зону лучистого переноса. Эта зона, расположена прямо над солнечным ядром и находится на расстояниях от 0,2-0,25 до 0,7 радиуса Солнца от его же центра. Перенос энергии в этой зоне происходит за счёт излучения и поглощения фотонов. Самое интересное в этом то, что один отдельный фотон может как переместится в следующий слой лучистой зоны, так и вернуться обратно. Поэтому, образовавшемуся в ядре фотону, чтобы выйти из зоны лучистого переноса, может потребоваться не один миллион лет! В среднем фотону нужно около 170 тыс. лет, чтобы дойти до следующего слоя Солнца – конвективной зоны.
В конвективной зоне происходит вихревое перемешивание плазмы, и дальнейший перенос солнечной энергии к поверхности Солнца осуществляемого движением, непосредственно, самого вещества. Охлаждённое на поверхности вещество фотосферы погружается в конвективную зону. С другой стороны, в нижней части зоны конвекции вещество получает излучение от лучистой зоны и поднимается вверх. Оба эти процесса идут с большой скоростью и называются конвекцией. Конвективная зона имеет толщину 200 тыс. км и находится под самой поверхностью Солнца. Всё вещество тут охлаждается до температуры в 5800 К. Эта зона имеет очень большое значение. Конвекция вызывает эффект магнитного динамо. И за счёт этого возникает магнитное поле.
Дальше характеристика Солнца такова.
Над конвективной зоной располагается фотосфера – это непосредственно видимая поверхность Солнца, толщиной приблизительно 100-400 км. Температура, возле края фотосферы уменьшается до 4400 К. Эффективная температура составляет 5778 градусов по Кельвину.
Внешняя оболочка Солнца, которая окружает фотосферу, называется хромосферой. Имеет толщину порядка 2000 км. Температура хромосферы увеличивается с возрастанием высоты над поверхностью Солнца. И составляет от 4400 К. – на поверхности, и 20000 К. на наибольшей высоте. Наблюдать хромосферу, без помощи специальных приспособлений, невозможно. Потому что её плотность очень невелика. Исключение составляют полные солнечные затмения. Когда диск Луны закрывает фотосферу, тогда расположенная над ней хромосфера видна, и светиться красным цветом.
Крайняя внешняя оболочка Солнца, именуемая солнечной короной и состоит из энергетических извержений и протуберанцев. Которые, отходя от Солнца, образуют солнечный ветер. Температура этой области составляет от одного до двух миллионов градусов по Кельвину. Максимальная корональная температура равна, на некоторых участках, от 8 млн. до 20 млн. К. Но существуют, так называемые, корональные дыры, в которых температура достигает 600 тыс. К. Как и хромосфера, солнечная корона имеет очень малую плотность, поэтому наблюдать её можно только когда происходят полные солнечные затмения или же с помощью приспособлений. Форма короны всегда разная и зависит от силы солнечной активности.
Из внешних частей солнечной короны устремляется солнечный ветер. Это направленное движение ионизированных частиц и доходит до самой границы солнечной системы — гелиосферы. Солнечный ветер бывает медленный (400 км/с) и быстрый (750 км/с). Отличаются они друг от друга не только скоростью, но и температурой, плотностью и своей структурой. Из-за солнечного ветра, на Земле происходит много явлений, такие как полярные сияния и геомагнитные бури. Так же он оказывает огромное влияние на работу электроники на Земле. От губительного воздействия солнечного ветра нашу Землю защищает её магнитное поле. На модели ниже видно, как меняется магнитное поле Земли под воздействием солнечного ветра.
В данной статье отображена не полная характеристика Солнца, а только лишь маленькая её часть. Которая, в общих чертах, рассказывает про нашу звезду.
Если Вам понравилась статья, поделитесь ней
Источник