Расширение Вселенной
Космология |
Изучаемые объекты и процессы |
|
Наблюдаемые процессы |
|
Теоретические изыскания |
|
Расширение Вселенной — явление, состоящее в почти однородном и изотропном расширении космического пространства в масштабах всей Вселенной. Экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Началом расширения Вселенной наука считает так называемый Большой взрыв. Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и изотропности Вселенной.
Содержание
Расширение Вселенной в различных моделях
Ускорение расширения Вселенной
Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia [1] [2] . За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шоу по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.
Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было найдено, что во Вселенной существует ранее неизвестная энергия с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».
По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).
Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света. Это не является нарушением специальной теории относительности. На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется. Земля, Солнечная система, наша Галактика, и наше Сверхскопление будут видны друг другу и в принципе достижимы путём космических полётов, в то время как вся остальная Вселенная исчезнет вдали. Со временем наше Сверхскопление придёт в состояние тепловой смерти, то есть осуществится сценарий, предполагавшийся для предыдущей, плоской модели Вселенной с преобладанием материи.
Существуют и более экзотические гипотезы о будущем Вселенной. Одна из них предполагает, что фантомная энергия приведёт к т. н. «расходящемуся» расширению. Это подразумевает, что расширяющая сила действия тёмной энергии продолжит неограниченно увеличиваться, пока не превзойдёт все остальные силы во Вселенной. По этому сценарию, тёмная энергия со временем разорвёт все гравитационно связанные структуры Вселенной, затем превзойдёт силы электростатических и внутриядерных взаимодействий, разорвёт атомы, ядра и нуклоны и уничтожит Вселенную в Большом Разрыве.
С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому Хлопку». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого Взрыва) должны сыграть точные измерения темпа ускорения.
См. также
Примечания
- ↑ Riess, A. et al. 1998, Astronomical Journal, 116, 1009
- ↑ Perlmutter, S. et al. 1999, Astrophysical Journal, 517, 565
Литература
- Ian Steer Who discovered Universe expansion?. — 2012. — arΧiv:1212.1359
Wikimedia Foundation . 2010 .
Смотреть что такое «Расширение Вселенной» в других словарях:
расширение Вселенной — visatos plėtimasis statusas T sritis fizika atitikmenys: angl. cosmic expansion; expansion of the universe vok. Ausdehnung des Weltalls, f; Expansion des Weltalls, f rus. космическое расширение, n; расширение Вселенной, n pranc. expansion… … Fizikos terminų žodynas
Расширение Вселенной — наблюдаемое явление увеличения расстояний между галактиками со скоростью, пропорциональной расстоянию между ними … Астрономический словарь
Расширение — Расширение: Расширение имени файла: Список расширений имени файла Расширение (ПО): Расширение (Mozilla) Список расширений Firefox Расширения (Opera) Дополнение (компьютерные игры) Расширение поля Расширение Вселенной Тепловое расширение… … Википедия
Метрическое расширение космоса — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование галактик … Википедия
Инфляционная модель Вселенной — Космология Изучаемые объекты и процессы … Википедия
Форма Вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование … Википедия
КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ — значение плотности вещества во Вселенной, определяемое выражением где Н постоянная Хаббла (см. Хаббла закон), G постоянная тяготения Ньютона. В однородных изотропных моделях Вселенной (см. Космологические модели )с равной нулю космологической… … Физическая энциклопедия
Тонкая настройка Вселенной — Проверить нейтральность. На странице обсуждения должны быть подробности … Википедия
КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ — плотн. в ва во Вселенной, определяющая геом. свойства пространства в космологич. моделях, построенных на основе общей теории относительности. Определяется выражением: р = = ЗН2/(8п(пи)С), где Н постоянная Хаббла, С гравитац. постоянная;… … Естествознание. Энциклопедический словарь
История развития представлений о Вселенной — С ранних времен человек задумывался об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по разному. Так, в Вавилоне жизнь на Земле тесно связывали с движением звезд , а в Китае идеи гармонии… … Википедия
Источник
Ускоряющееся расширение Вселенной — Accelerating expansion of the universe
Категория
Астрономический портал
Наблюдения показывают , что расширение по Вселенной ускоряется, таким образом, что скорость , при которой далекой галактике отступает от наблюдателя непрерывно увеличивается со временем.
Ускоренное расширение было обнаружено в 1998 году двумя независимыми проектами, Проектом по космологии сверхновых звезд и группой по поиску сверхновых с высоким Z , которые оба использовали далекие сверхновые типа Ia для измерения ускорения. Идея заключалась в том, что, поскольку сверхновые типа Ia имеют почти такую же внутреннюю яркость ( стандартная свеча ), и поскольку объекты, находящиеся дальше, кажутся более тусклыми, мы можем использовать наблюдаемую яркость этих сверхновых, чтобы измерить расстояние до них. Затем расстояние можно сравнить с космологическим красным смещением сверхновой , которое измеряет, насколько Вселенная расширилась с момента возникновения сверхновой. Неожиданным результатом стало то, что объекты во Вселенной удаляются друг от друга с ускоренной скоростью. В то время космологи ожидали, что скорость удаления всегда будет замедляться из-за гравитационного притяжения материи во Вселенной. Три члена этих двух групп впоследствии были удостоены Нобелевских премий за свое открытие. Подтверждающие доказательства были найдены в барионных акустических колебаниях и при анализе скоплений галактик.
Считается, что ускоренное расширение Вселенной началось с тех пор, как Вселенная вступила в эру доминирования темной энергии примерно 4 миллиарда лет назад. В рамках общей теории относительности ускоренное расширение можно объяснить положительным значением космологической постоянной Λ , эквивалентным наличию положительной энергии вакуума , получившей название « темная энергия ». Хотя есть альтернативные возможные объяснения, описание, предполагающее темную энергию (положительное Λ ), используется в текущей стандартной модели космологии , которая также включает холодную темную материю (CDM) и известна как модель Lambda-CDM .
СОДЕРЖАНИЕ
Задний план
За десятилетия, прошедшие с момента обнаружения космического микроволнового фона (CMB) в 1965 году, модель Большого взрыва стала наиболее распространенной моделью, объясняющей эволюцию нашей Вселенной. Уравнение Фридмана определяет, как энергия Вселенной управляет ее расширением.
ЧАС 2 знак равно ( а ˙ а ) 2 знак равно 8 π грамм 3 ρ — κ c 2 а 2 <\ displaystyle H ^ <2>= <\ left (<\ frac <\ dot > > \ right)> ^ <2>= <\ frac <8 <\ pi>G> <3>> \ rho — <\ frac <<\ kappa>c ^ <2>> >>>
где κ представляет собой кривизну Вселенной , a ( t ) — масштабный фактор , ρ — полная плотность энергии Вселенной, а H — параметр Хаббла .
ρ c знак равно 3 ЧАС 2 8 π грамм <\ displaystyle \ rho _
Ω знак равно ρ ρ c <\ Displaystyle \ Omega = <\ гидроразрыва <\ rho><\ rho _
Затем мы можем переписать параметр Хаббла как
ЧАС ( а ) знак равно ЧАС 0 Ω k а — 2 + Ω м а — 3 + Ω р а — 4 + Ω D E а — 3 ( 1 + ш ) <\ displaystyle H (a) = H_ <0> <\ sqrt <<\ Omega _
где четыре предполагаемых в настоящее время вкладчика в плотность энергии Вселенной — кривизна , материя , излучение и темная энергия . Каждый из компонентов уменьшается с расширением Вселенной (увеличение масштабного фактора), за исключением, возможно, члена темной энергии. Именно значения этих космологических параметров используют физики для определения ускорения Вселенной.
Уравнение ускорения описывает эволюцию масштабного фактора во времени.
а ¨ а знак равно — 4 π грамм 3 ( ρ + 3 п c 2 ) <\ displaystyle <\ frac <\ ddot > > = — <\ frac <4 <\ pi>G> <3>> \ left (\ rho + <\ frac <3P>
где давление P определяется выбранной космологической моделью. (см. пояснительные модели ниже)
Одно время физики были настолько уверены в замедлении расширения Вселенной, что ввели так называемый параметр замедления q 0 . Текущие наблюдения показывают, что этот параметр замедления отрицательный.
Отношение к инфляции
Согласно теории космической инфляции , очень ранняя Вселенная пережила период очень быстрого квазиэкспоненциального расширения. Хотя временной масштаб для этого периода расширения был намного короче, чем у текущего расширения, это был период ускоренного расширения с некоторым сходством с текущей эпохой.
Техническое определение
Определение «ускорение расширения» является то , что вторая производная по времени космического масштабного коэффициента, является положительной, что эквивалентно параметром замедления , , будучи отрицательным. Однако обратите внимание, что это не означает, что параметр Хаббла увеличивается со временем. Поскольку параметр Хаббла определяется как , из определений следует, что производная параметра Хаббла определяется выражением а ¨ <\ Displaystyle <\ ddot <а>>> q <\ displaystyle q>
ЧАС ( т ) ≡ а ˙ ( т ) / а ( т ) <\ Displaystyle Н (т) \ экв <\ точка <а>> (т) / а (т)>
d ЧАС d т знак равно — ЧАС 2 ( 1 + q ) <\ displaystyle <\ frac
поэтому параметр Хаббла со временем уменьшается, если только . Предпочтение отдается наблюдению , что подразумевает, что положительно, но отрицательно. По сути, это означает, что космическая скорость удаления любой конкретной галактики увеличивается со временем, но ее соотношение скорость / расстояние все еще уменьшается; таким образом, различные галактики, расширяющиеся по сфере фиксированного радиуса, в более поздние времена пересекают сферу медленнее. q — 1 <\ displaystyle q q ≈ — 0,55 <\ displaystyle q \ приблизительно -0,55>
а ¨ <\ Displaystyle <\ ddot <а>>>
d ЧАС / d т <\ displaystyle dH / dt>
Как видно из выше , что в случае «нулевого ускорения / замедления» соответствует является линейной функцией , , , и . а ( т ) <\ Displaystyle а (т)> т <\ displaystyle t>
q знак равно 0 <\ displaystyle q = 0>
а ˙ знак равно c о п s т <\ displaystyle <\ dot > = const>
ЧАС ( т ) знак равно 1 / т <\ Displaystyle Н (т) = 1 / т>
Доказательства ускорения
Чтобы узнать о скорости расширения Вселенной, мы смотрим на соотношение звездных величин и красного смещения астрономических объектов с использованием стандартных свечей или на их соотношение расстояние-красное смещение с использованием стандартных линейок . Мы также можем посмотреть на рост крупномасштабной структуры и обнаружить, что наблюдаемые значения космологических параметров лучше всего описываются моделями, которые включают ускоряющееся расширение.
Наблюдение за сверхновой
В 1998 году первое свидетельство ускорения было получено при наблюдении сверхновых типа Ia , которые представляют собой взрывающиеся белые карлики , превысившие предел своей устойчивости . Поскольку все они имеют одинаковую массу, их собственная светимость может быть стандартизирована. Для обнаружения сверхновых используется повторное отображение выбранных областей неба, затем последующие наблюдения дают их пиковую яркость, которая конвертируется в величину, известную как расстояние светимости (подробности см. В разделе « Измерения расстояний в космологии» ). Спектральные линии их света можно использовать для определения их красного смещения .
Для сверхновых с красным смещением менее 0,1 или временем прохождения света менее 10 процентов возраста Вселенной это дает почти линейную зависимость между расстоянием и красным смещением в соответствии с законом Хаббла . На больших расстояниях, поскольку скорость расширения Вселенной менялась со временем, соотношение расстояние-красное смещение отклоняется от линейности, и это отклонение зависит от того, как скорость расширения изменялась с течением времени. Полный расчет требует компьютерного интегрирования уравнения Фридмана, но простой вывод можно дать следующим образом: красное смещение z напрямую дает космический масштабный коэффициент в момент взрыва сверхновой.
а ( т ) знак равно 1 1 + z <\ Displaystyle а (т) = <\ гидроразрыва <1><1 + z>>>
Таким образом, сверхновая с измеренным красным смещением z = 0,5 означает, что Вселенная была 1 / 1 + 0,5 знак равно 2 / 3 нынешнего размера, когда взорвалась сверхновая. В случае ускоренного расширения, положительное значение было меньше в прошлом, чем сегодня. Таким образом, ускоряющейся Вселенной потребовалось больше времени, чтобы расшириться от 2/3 до 1 раза от ее нынешнего размера, по сравнению с неускоряющейся Вселенной с постоянным и таким же современным значением постоянной Хаббла. Это приводит к большему времени прохождения света, большему расстоянию и более слабым сверхновым, что соответствует реальным наблюдениям. Адам Рисс и др. обнаружили, что «расстояния до SNe Ia с большим красным смещением были в среднем на 10–15% больше, чем ожидалось во Вселенной с низкой плотностью массы Ω M = 0,2 без космологической постоянной». Это означает, что измеренные расстояния с большим красным смещением были слишком большими по сравнению с ближайшими расстояниями для замедляющейся Вселенной. а ¨ <\ Displaystyle <\ ddot <а>>> а ˙ <\ displaystyle <\ dot >>
а ˙ <\ displaystyle <\ dot >>
Барионные акустические колебания
В ранней Вселенной до того, как произошла рекомбинация и разделение , фотоны и материя существовали в первичной плазме . Точки с более высокой плотностью в фотонно-барионной плазме сжимались под действием силы тяжести до тех пор, пока давление не становилось слишком большим, и они снова расширялись. Это сжатие и расширение создавало в плазме вибрации, аналогичные звуковым волнам . Поскольку темная материя взаимодействует только гравитационно, она остается в центре звуковой волны, источнике первоначальной сверхплотности. Когда произошло разделение, примерно через 380 000 лет после Большого взрыва, фотоны отделились от материи и смогли свободно течь через Вселенную, создавая космический микроволновый фон, каким мы его знаем. Это оставило оболочки барионной материи на фиксированном радиусе от сверхплотности темной материи, на расстоянии, известном как звуковой горизонт. Со временем, когда Вселенная расширилась, именно при этих анизотропии плотности материи начали формироваться галактики. Таким образом, глядя на расстояния, на которых галактики с разным красным смещением стремятся к скоплению, можно определить расстояние стандартного углового диаметра и использовать его для сравнения с расстояниями, предсказанными различными космологическими моделями.
Были обнаружены пики в корреляционной функции (вероятность того, что две галактики будут находиться на определенном расстоянии друг от друга) при 100 ч -1 Мпк (где h — безразмерная постоянная Хаббла ), что указывает на то, что это размер звукового горизонта сегодня, и сравнивая это со звуковым горизонтом во время разделения (используя CMB), мы можем подтвердить ускоренное расширение Вселенной.
Скопления галактик
Измерение функций масс скоплений галактик , которые описывают плотность скоплений выше пороговой массы, также свидетельствует о темной энергии. Путем сравнения этих массовых функций при больших и малых красных смещениях с предсказанными различными космологическими моделями, получены значения w и Ω m , которые подтверждают низкую плотность вещества и ненулевое количество темной энергии.
Возраст вселенной
Имея космологическую модель с определенными значениями космологических параметров плотности, можно интегрировать уравнения Фридмана и получить возраст Вселенной.
т 0 знак равно ∫ 0 1 d а а ˙ <\ displaystyle t_ <0>= \ int _ <0>^ <1> <\ frac
Сравнивая это с фактическими измеренными значениями космологических параметров, мы можем подтвердить справедливость модели, которая ускоряется сейчас и имела более медленное расширение в прошлом.
Гравитационные волны как стандартные сирены
Недавние открытия гравитационных волн с помощью LIGO и VIRGO не только подтвердили предсказания Эйнштейна, но и открыли новое окно во Вселенную. Эти гравитационные волны могут работать как стандартные сирены для измерения скорости расширения Вселенной. Abbot et al. В 2017 году значение постоянной Хаббла составило примерно 70 километров в секунду на мегапарсек. Амплитуды деформации h зависят от масс объектов, вызывающих волны, расстояния от точки наблюдения и частоты обнаружения гравитационных волн. Соответствующие меры расстояния зависят от космологических параметров, таких как постоянная Хаббла для близлежащих объектов, и будут зависеть от других космологических параметров, таких как плотность темной энергии, плотность материи и т. Д. Для удаленных источников.
Пояснительные модели
Темная энергия
Самым важным свойством темной энергии является то, что она имеет отрицательное давление (отталкивающее действие), которое относительно равномерно распределяется в пространстве.
п знак равно ш c 2 ρ <\ displaystyle P = wc ^ <2>\ rho>
где c — скорость света, а ρ — плотность энергии. Различные теории темной энергии предполагают разные значения w , причем w 1 / 3 для космического ускорения (это приводит к положительному значению ä в уравнении ускорения выше).
Самое простое объяснение темной энергии состоит в том, что это космологическая постоянная или энергия вакуума ; в этом случае w = −1 . Это приводит к модели лямбда-CDM , которая с 2003 года по настоящее время известна как Стандартная модель космологии, поскольку это простейшая модель, хорошо согласующаяся с множеством недавних наблюдений. Riess et al. обнаружили, что их результаты по наблюдениям сверхновых отдают предпочтение расширяющимся моделям с положительной космологической постоянной ( Ω λ > 0 ) и текущим ускоренным расширением ( q 0 ).
Фантомная энергия
Текущие наблюдения допускают возможность космологической модели, содержащей компонент темной энергии с уравнением состояния w . Эта фантомная плотность энергии станет бесконечной за конечное время, вызывая такое огромное гравитационное отталкивание, что Вселенная потеряет всю структуру и закончится Большим разрывом . Например, для w = — 3 / 2 и H 0 = 70 км · с −1 · Мпк −1 , время, оставшееся до того, как Вселенная закончится в этом Большом разломе, составляет 22 миллиарда лет.
Альтернативные теории
Есть много альтернативных объяснений ускоряющейся Вселенной. Некоторые примеры — квинтэссенция , предложенная форма темной энергии с непостоянным уравнением состояния, плотность которой со временем уменьшается. Отрицательная масса космология не предполагает , что плотность массы Вселенной положительна (как это сделано в наблюдениях сверхновых), и вместо этого находит отрицательную космологическую постоянную. Бритва Оккама также предполагает, что это «более экономная гипотеза». Темная жидкость — альтернативное объяснение ускоренного расширения, которое пытается объединить темную материю и темную энергию в единую структуру. В качестве альтернативы, некоторые авторы утверждали, что ускоренное расширение Вселенной может быть связано с отталкивающим гравитационным взаимодействием антивещества или отклонением законов гравитации от общей теории относительности, таких как массивная гравитация , что означает, что гравитоны сами имеют массу. Измерение скорости гравитации с помощью гравитационного волнового события GW170817 исключило многие модифицированные теории гравитации в качестве альтернативного объяснения темной энергии.
Другой тип модели, гипотеза обратной реакции, была предложена космологом Сикси Рясяненом: скорость расширения неоднородна, но мы находимся в области, где расширение происходит быстрее, чем фон. Неоднородности в ранней Вселенной вызывают образование стенок и пузырей, причем внутри пузыря содержится меньше вещества, чем в среднем. Согласно общей теории относительности, пространство менее искривлено, чем стены, и поэтому кажется, что оно имеет больший объем и более высокую скорость расширения. В более плотных областях расширение замедляется более сильным гравитационным притяжением. Следовательно, внутренний коллапс более плотных областей выглядит так же, как ускоренное расширение пузырьков, что приводит нас к выводу, что Вселенная подвергается ускоренному расширению. Преимущество в том, что для этого не требуется никакой новой физики, такой как темная энергия. Рясянен не считает эту модель вероятной, но без каких-либо фальсификаций она должна оставаться возможной. Для работы потребуются довольно большие колебания плотности (20%).
Последняя возможность состоит в том, что темная энергия — это иллюзия, вызванная некоторым смещением в измерениях. Например, если мы находимся в более пустой, чем в среднем, области пространства, наблюдаемая скорость космического расширения может быть ошибочно принята за изменение во времени или за ускорение. Другой подход использует космологическое расширение принципа эквивалентности, чтобы показать, как может казаться, что пространство расширяется быстрее в пустотах, окружающих наше локальное скопление. Будучи слабыми, такие эффекты, совокупно рассматриваемые в течение миллиардов лет, могут стать значительными, создавая иллюзию космического ускорения и создавая впечатление, будто мы живем в пузыре Хаббла . Еще одна возможность состоит в том, что ускоренное расширение Вселенной — это иллюзия, вызванная нашим относительным движением по отношению к остальной Вселенной, или что использованный размер выборки сверхновых не был достаточно большим.
Теории последствий для Вселенной
По мере расширения Вселенной плотность излучения и обычной темной материи снижается быстрее, чем плотность темной энергии (см. Уравнение состояния ), и, в конечном итоге, темная энергия доминирует. В частности, когда масштаб Вселенной удваивается, плотность материи уменьшается в 8 раз, но плотность темной энергии почти не меняется (она точно постоянна, если темная энергия является космологической постоянной ).
В моделях, где темная энергия является космологической постоянной, Вселенная будет экспоненциально расширяться со временем в далеком будущем, приближаясь к Вселенной де Ситтера . Это в конечном итоге приведет к исчезновению всех свидетельств Большого взрыва, поскольку космический микроволновый фон смещается в сторону более низких интенсивностей и длин волн. В конце концов, его частота станет достаточно низкой, чтобы он был поглощен межзвездной средой и, таким образом, был скрыт от любого наблюдателя в галактике. Это произойдет, когда возраст Вселенной будет меньше чем в 50 раз больше своего нынешнего возраста, что приведет к концу космологии в том виде, в каком мы ее знаем, поскольку далекая Вселенная потемнеет.
Постоянно расширяющаяся Вселенная с ненулевой космологической постоянной имеет плотность массы, уменьшающуюся со временем. В таком сценарии текущее понимание состоит в том, что вся материя будет ионизироваться и распадаться на изолированные стабильные частицы, такие как электроны и нейтрино , при этом все сложные структуры рассеиваются. Этот сценарий известен как « тепловая смерть Вселенной ».
Источник
➤ Adblockdetector