Ученые раскрыли, как возникают самые тяжелые элементы во Вселенной
Группа международных исследователей вернулась к формированию Солнечной системы 4,6 миллиарда лет назад, чтобы по-новому взглянуть на космическое происхождение самых тяжелых элементов. И обнаружила, как именно же они образовались и во время какого процесса.
Тяжелые элементы, с которыми мы сталкиваемся в нашей повседневной жизни, такие как железо и серебро, не существовали в начале Вселенной 13,7 миллиарда лет назад. Они были созданы во времени в результате ядерных реакций, называемых нуклеосинтезом, которые объединили атомы вместе. В частности, йод, золото, платина, уран, плутоний и кюрий — некоторые из самых тяжелых элементов — были созданы с помощью особого типа нуклеосинтеза, называемого процессом быстрого захвата нейтронов или r-процессом.
Вопрос о том, какие астрономические события могут производить самые тяжелые элементы, оставался загадкой на протяжении десятилетий. Сегодня считается, что r-процесс может происходить во время сильных столкновений между двумя нейтронными звездами, между нейтронной звездой и черной дырой или во время редких взрывов после смерти массивных звезд. Такие высокоэнергетические события происходят во Вселенной очень редко. Когда это происходит, нейтроны включаются в ядра атомов, а затем превращаются в протоны. Поскольку элементы в периодической таблице определяются количеством протонов в их ядрах, процесс r создает более тяжелые ядра по мере захвата большего количества нейтронов.
Некоторые из ядер, образованных в результате r-процесса, радиоактивны, и для их распада на стабильные ядра требуются миллионы лет. Йод-129 и кюрий-247 — два таких ядра, которые были образованы до образования Солнца. Они были включены в твердые тела, которые в конечном итоге упали на земную поверхность в виде метеоритов. Внутри этих метеоритов в результате радиоактивного распада образовался избыток стабильных ядер. Сегодня это превышение можно измерить в лабораториях, чтобы определить количество йода-129 и кюрия-247, которые присутствовали в Солнечной системе непосредственно перед ее образованием.
Почему эти два ядра r-процесса такие особенные? У них есть обычное свойство: они распадаются почти с одинаковой скоростью. Другими словами, соотношение между йодом-129 и кюрием-247 не изменилось с момента их создания миллиарды лет назад.
«Это удивительное совпадение, особенно с учетом того, что эти ядра являются двумя из пяти радиоактивных ядер r-процесса, которые можно измерить в метеоритах. Когда соотношение йода-129 и кюрия-247 застыло во времени, как доисторическое ископаемое, мы можем напрямую взглянуть на последнюю волну производства тяжелых элементов, которая сформировала состав Солнечной системы и всего в ней».
Бенуа Котэ, обсерватория Конколы
Йод с его 53 протонами создается легче, чем кюрий с его 96 протонами. Это связано с тем, что для достижения большего числа протонов кюрия требуется больше реакций захвата нейтронов. Как следствие, соотношение йода-129 и кюрия-247 сильно зависит от количества нейтронов, которые были доступны во время их создания.
Команда рассчитала соотношение йода-129 к кюрию-247, синтезируемые столкновениями нейтронных звезд и черных дыр, чтобы найти правильный набор условий, воспроизводящих состав метеоритов. Они пришли к выводу, что количество нейтронов, доступных во время последнего события r-процесса перед рождением Солнечной системы, не могло быть слишком большим. В противном случае было бы образовано слишком много кюрия по сравнению с йодом. Это означает, что очень богатые нейтронами источники, такие как материя, оторвавшаяся от поверхности нейтронной звезды во время столкновения, вероятно, не играли важной роли.
Так что же создало эти ядра r-процесса ? Хотя исследователи могли предоставить новую информативную информацию о том, как они были созданы, они не смогли определить природу астрономического объекта, который их создал. Это связано с тем, что модели нуклеосинтеза основаны на неопределенных ядерных свойствах, и до сих пор неясно, как связать доступность нейтронов с конкретными астрономическими объектами — такими, как массивные взрывы звезд и сталкивающиеся нейтронные звезды.
С помощью этого нового диагностического инструмента достижения в области астрофизического моделирования и понимания ядерных свойств могут выявить, какие астрономические объекты создают самые тяжелые элементы Солнечной системы.
Источник
Откуда берутся тяжелые металлы
Слияние нейтронных звезд происходит очень редко, в нашей Галактике, например, — раз в десять тысяч лет, а образование новых элементов идет считанные миллисекунды после него. Однако, этот процесс является важным источником элементов тяжелее никеля и основным источником стабильных элементов тяжелее церия. Похоже, уже очень скоро нам расскажут о том, что сразу несколько телескопов увидели это столкновение и образовавшиеся в его результате гравитационные волны. Мы решили объяснить читателям N + 1, как это открытие поможет нам разобраться в происхождении различных элементов во Вселенной.
Несмотря на стремительное развитие астрофизики за последние 100 лет, наши знания о происхождении многих элементов таблицы Менделеева оставляет желать лучшего. Общая картина более или менее сложилась благодаря работам таких титанов, как Артур Эддингтон, Георгий Гамов и Фред Хойл, — водород и гелий появились в результате Большого взрыва, бомбардировка межзвездной среды космическими лучами ответственна за литий, бериллий, бор, а элементы от углерода до молибдена (вместе с примкнувшими к ним барием, вольфрамом и титаном) появляются в результате звездного нуклеосинтеза — реакций ядерного синтеза в ядрах звезд либо во время их жизни, либо в результате их яркой смерти (которое мы наблюдаем в виде вспышек сверхновых).
Элементы с массовым атомным числом больше 94 (и технеций) получены людьми, еще часть элементов весьма нестабильна, распадается при всяком удобном случае и в природе почти не встречается (полоний, астат и прочие).
Происхождение различных элементов. Фиолетовым выделены те атомы, которые появляются в результате слияния нейтронных звезд.
Это качественная картина, но при попытке дать количественный анализ начинаются проблемы: вспышки сверхновых, будучи одними из самых энергетически мощных взрывов во Вселенной, все равно не дают нужного количества тяжелых элементов. Ряд ученых еще в конце 1990-х провели компьютерные симуляции и пришли к выводу, что необходимые элементы можно получить, только если очень точно «подкрутить» параметры сверхновых (сечение захвата нейтрино или свойства слабого взаимодействия) и задать им нереалистичные начальные условия.Кроме того, ряд тяжелых элементов отсутствует у очень старых звезд. В них уже есть кремний, кальций и даже железо (то есть они собирались из водородного облака, которое было до этого обогащено остатками давно взорвавшихся сверхновых), но нет ни рубидия, ни йода, ни золота. Однако эти же элементы есть в более молодых звездах, которые, по идее, должны были образовываться из таких же облаков с остатками сверхновых. Не правда ли, странным выглядит предположение, что сверхновые через пару миллиардов лет после Большого взрыва поменяли принцип работы и стали производить элементы совсем в другой пропорции?
Значит, во Вселенной должны быть другие источники тяжелых элементов. В 1989 году было выдвинуто предположение, что таким источником могут быть слияния нейтронных звезд, вращающихся друг вокруг друга. Несмотря на то, что это намного более редкие события (мало того, что нейтронная звезда — достаточно экзотический объект, так ей еще нужно подобрать пару из такой же звезды), похоже, что за золото и платину в наших кольцах нам нужно сказать спасибо именно им.
Масса нейтронных звезд не очень велика (в среднем, она не должна превышать предел Оппенгеймера-Волкова, то есть около двух массой Солнца, иначе она станет черной дырой, хотя вращение или приливное взаимодействие со стороны звезды-компаньона может немного повысить этот предел), а в пространство после слияния выбрасывается и того меньше — около 10 процентов от их массы. Однако эффективность синтеза новых элементов во время слияния настолько высока, что этого оказывается достаточно для решения загадки недостающих тяжелых элементов. Подобная эффективность возникает благодаря быстрому нейтронному захвату или r-процессу — «вдавливанию» в ядра элементов разлетающихся от взрыва нейтронов. Само понятие «r-процесс» появилось в 1957 году, когда вышла фундаментальная статья B 2 FH (этой статье посвящена отдельная страница в Википедии!), в которой четверо ученых дали явлению название и предположили условия, необходимые для его протекания.
Откуда в нейтронной звезде, которая, по идее, должна состоять из нейтронов, тяжелые ядра? Дело в том, что нейтроны (и гипотетическая кварк-глюоная плазма) находятся только во внутренней части звезды, а внешняя ее «кора» — два километра из десяти — состоит из полноценных тяжелых элементов периодической таблицы Менделеева.
Когда две вращающиеся нейтронные звезды сближаются, это не похоже на столкновение двух бильярдных шаров: взаимное тяготение разрывает их внешние оболочки, срывая слой вещества со звезды, поэтому само слияние происходит в коконе из горячей плазмы, нейтронов и электронов. Сразу после слияния звезд часть массы переходит в гравитационные волны, основная масса становится либо очень быстро вращающейся нейтронной звездой, либо черной дырой, еще часть массы остается гравитационно связана с этим новым объектом и будет постепенно падать на него, но в то же время огромная энергия высвобождается в виде фотонов и ударной волны. Она сдувает весь внешний кокон ударной волной и высвобожденным из ядра потоком нейтронов. Именно эта концентрация в одном месте высокой температуры, плотной среды из атомов и гигантского потока нейтронов приводит к удивительным превращениям.
Компьютерная симуляция, описывающая среду сразу после слияния двух нейтронных звезд. Два спиральных рукава состоят из вещества внешней части нейтронных звезд, сорванных приливным взаимодействием с соседкой. Только материя, обозначенная серым цветом, будет выброшена из систем после взрыва, остальная часть будет вращаться вокруг образовавшегося объекта.
Источник
Откуда взялись элементы?
Все, что когда-либо существовало или когда-либо будет существовать, стало возможным благодаря некоторой перестановке или комбинации элементов, найденных в периодической таблице. Этот красочный набор элементов содержит целую вселенную информации.
Таблица Менделеева делает нашу жизнь намного проще, но в то же время и труднее! Это не только помогает нам помнить и понимать наши элементы, но также вызывает глубокие экзистенциальные вопросы, например, как эти элементы вообще возникли?
Появление материи
Эта попытка обнаружить происхождение химических элементов возвращает нас к началу времен.
Сразу после Большого взрыва Вселенная представляла собой плотный суп из материи и энергии. Температура была около 10 32 Кельвина. Вселенная начала надуваться и одновременно остывать (хотя температура все еще составляла триллионы Кельвина). Начали появляться элементарные частицы (кварки и электроны).
Когда Вселенной было немногим менее 0,0001 секунды, она начала испытывать новую форму возмущения. Космическая энергия, которая раньше была излучением высокой энергии, начала сталкиваться друг с другом.
Эти столкновения производят частицы (протоны) и античастицы (антипротоны) в процессе, называемом образованием пар.
Вселенная непрерывно выпускала все больше и больше таких пар. С другой стороны, эти протонные и антипротонные пары аннигилировали друг друга и снова превращались в фотоны и излучение.
Теперь, в возрасте 0,0001 секунды, Вселенная была немного холоднее, и фотоны перестали образовывать новые пары, но уже сформированные противоположные пары продолжали аннигилировать друг друга.
Можно было подумать, что в конечном итоге протонов не останется, но, как назло, процесс образования пар был немного более склонен к протонам (мы до сих пор не знаем почему). После того как все процессы прекратились, Вселенная осталась в основном фотонами, а также легкими брызгами протонов.
Быстро расширяющаяся Вселенная заставила несколько протонов столкнуться с электронами, породив нейтроны (на каждые 7 протонов приходится 1 нейтрон). На тот момент Вселенная была на несколько секунд старше и намного холоднее (всего один миллиард Кельвинов).
Протоны и нейтроны собрались вместе, чтобы сформировать ядро/ион первого элемента Водорода (H), который затем слился с другим ядром водорода, чтобы сформировать ядро Гелия (He). Прошло три минуты после Большого взрыва, и соотношение теперь составляет 75% ионов H и 25% ионов He (вместе с очень незначительным количеством Li-ионов). Элементы находятся в ионной форме, потому что Вселенная все еще очень горячая — слишком горячая, чтобы образовывать атомы.
Примерно 380 000 лет после Большого взрыва наступила эпоха рекомбинации. После многих лет расширения и охлаждения Вселенная была наконец готова к тому, что ядра захватили электроны. Ионы H и He рекомбинируют с электронами и образуют первые стабильные атомы (представьте, насколько легкими были бы занятия по химии на этом этапе!), Давая нам нашу первую форму света и эффективно инициируя химическую эволюцию.
Однако после эпохи рекомбинации Вселенная снова потемнела.
Нуклеосинтез и жизнь звезд
Со временем Вселенная остыла, плотные газовые облака собрались вместе под действием силы тяжести и создали первые области звездообразования. Когда облака слились воедино, они начали формировать горячие и тяжелые ядра, которые не хотели становиться больше. Горячее ядро начало гореть, чтобы предотвратить слипание еще большего количества облаков. Так началось соревнование между силой тяжести и давлением горения в конденсированном ядре. Точка, в которой эти две силы приходят в равновесие, — это когда рождается звезда!
За бесчисленные тысячелетия образовалось множество галактик, в каждой из которых мерцали миллионы больших и малых звезд. И что делает их яркими? Их горящие ядра.
Чтобы их ядра не коллапсировали под действием силы тяжести, звездам нужно было подключиться к постоянному источнику энергии. Эта энергия охотно обеспечивалась высвобождением энергии связи.
Представьте, что 4 атома водорода объединяются в ядре суммы; два протона из его ядра остаются, а два других превращаются в нейтроны (n) с помощью квантового туннелирования.
После слияния они образуют ядро гелия. Образовавшийся гелий весит немного меньше общей массы 2 n и 2 p. Недостающая масса — это то, что преобразуется в энергию связи и в конечном итоге питает звезду. Одна такая реакция высвобождает 26,71 мегаэлектронвольт энергии… теперь представьте себе миллионы таких взаимодействий, происходящих с невероятной скоростью!
Горение водорода в звездах
На протяжении всей жизни звезда претерпевает различные стадии сжигания топлива, чтобы не разрушиться. Этот процесс порождает звездный феномен нуклеосинтеза, который начинается с горения или слияния водорода. Звезда тратит 90% своей жизни на превращение водорода в гелий. После того как водород истощен, он начинает превращать гелий в высшие элементы. С каждым новым этапом слияния элементов ядро становится все плотнее, а внешние слои звезд начинают расширяться, постепенно превращаясь в красного гиганта.
Жизненный цикл звезды
Звезды, примерно эквивалентные массе нашего Солнца (или более легкие), могут производить элементы выше гелия только после превращения в красный гигант (что означает, что он вот-вот умрет), поскольку их ядра недостаточно горячи. Однако ядра звезд большой массы делают идеальные котлы для синтеза ядер тяжелее гелия, чтобы генерировать энергию. С этого момента в статье мы будем рассматривать только массивные звезды.
Два атома гелия сливаются, образуя углерод, который затем соединяется с другим гелием, образуя кислород, в результате чего образуются все элементы периодической таблицы вплоть до кремния.
Последний этап стабильной звездной эволюции наступает, когда начинается горение кремния. Когда ядро начинает плавить кремний с железом, дни звезды действительно сочтены. Вскоре в ядре больше не будет ядерных реакций для «победы» над гравитацией. Железо имеет самое стабильное ядро во Вселенной, и его сплавление с чем-то более тяжелым не высвобождает энергию, но фактически требует внешней энергии. Это знаменует начало конца жизни огромной звезды.
Когда в ядре есть только железо (и следы никеля), оно становится настолько плотным, что начинает разрушаться само по себе. В последние несколько минут звезда выглядит слоистой как лук. В последние несколько секунд, когда ядро продолжает разрушаться, все атомы прижимаются друг к другу, что создает колоссальное количество энергии и давления. Это посылает ударную волну энергии по разным оболочкам.
В этот момент звезда становится сверхновой, распыляя каждый созданный ею элемент в бесконечное пространство!
Образование элементов тяжелее железа
Помните последние несколько секунд и только что упомянутую ударную волну? Когда звезда умирает и взрывается в сверхновую, она выделяет огромное количество энергии (температура поднимается до миллиардов Кельвинов) и очень плотное облако нейтронов.
Эти нейтроны взаимодействуют с атомами уже сформированных элементов. Они претерпевают серию сплавов и делений с образованием элементов вплоть до урана, а также нескольких трансурановых элементов, таких как кюрий, калифорний и фермий. Весь этот процесс быстрого захвата нейтронов или r-процесс происходит менее чем за секунду. Такие элементы, как золото, платина и серебро, настолько редки и дороги, потому что для их создания требуется умирающая звезда!
Другой распространенный путь — гораздо более медленный процесс захвата нейтронов, также известный как s-процесс. Это может происходить в различных термоядерных слоях звезды или внутри нейтронной звезды, которая имеет достаточно нейтронов и подходящие условия для захвата. Механизм для s- и r-процессов одинаков.
Ядро элемента захватывает нейтроны и превращается в свой изотоп. Если образовавшийся изотоп нестабилен, ядро подвергается бета-распаду с образованием следующего стабильного элемента. Таким образом, все известные нам элементы, включая железо и вплоть до урана, были произведены этим непрерывным процессом. Другая форма роста ядра — захват протона или p-процесс.
Это верно для всех элементов, за исключением технития и прометия, которые не имеют стабильных изотопов, которые могли бы длиться достаточно долго, чтобы мы могли найти. Все элементы после урана являются искусственными и радиоактивными с коротким периодом полураспада.
Это приводит к другому вопросу . Как элементы, созданные взрывающейся звездой, оказались здесь, на Земле?
Доставка на Землю
Вселенная — это гигантская фабрика для переработки; она перерабатывает и повторно использует каждый кусок материи, который когда-то был создан в процессе химического обогащения. Миллионы галактик, звезд и планет образовались и будут образованы с использованием той же самой первозданной материи, которая осталась после Большого взрыва.
Молодая Вселенная состояла из водорода и ¼ гелия, в то время как остальная часть вещества была незначительной. Однако, после миллиардов лет горения и взрывов, Вселенная теперь состоит из 2% других элементов! Это может показаться не впечатляющим, но в космическом масштабе этого достаточно!
Элементы, выброшенные в космос после смерти звезды, в конечном итоге попадают в новые регионы звездообразования, где молодые звезды начинают свой путь. Из-за гравитации часть мертвых звезд становится частью следующего поколения звезд.
После того, как эти звезды умирают, материя снова возвращается в космос. Этот цикл продолжается снова и снова эоны и тысячелетия. То же самое произошло, когда формировалась наша собственная солнечная система. Большая его часть в конечном итоге создала наш любимый большой огненный шар — Солнце. Однако оставшаяся звездная пыль, вращающаяся вокруг Солнца, в конечном итоге сгруппировалась, образуя астероиды и планеты, включая наш дом — Землю.
Вы не поверите, но все атомы в наших телах старше самой Солнечной системы! Они были созданы в результате серии событий, последовавших за одним событием, которое все началось 13,8 миллиарда лет назад. Золото в наших украшениях и цинк в наших батареях были созданы в последние моменты жизни звезды. Кислород и углерод в нашей газированной воде, железо в нашей крови и кальций в наших зубах были выкованы в тлеющем сердце звезды. Космос действительно находится внутри каждого из нас.
Источник