Новый метод уточняет постоянную Хаббла и возраст Вселенной
Подходы к датировке Большого взрыва, породившего вселенную, опираются на математику и вычислительное моделирование, используя оценки расстояний самых старых звезд, поведение галактик и скорость расширения Вселенной
Используя известные расстояния в 50 галактик для уточнения вычислений по константе Хаббла, исследовательская группа во главе с астрономом Университета Орегона оценила возраст Вселенной в 12,6 миллиарда лет.
Подходы к датировке Большого взрыва, породившего вселенную, опираются на математику и вычислительное моделирование, используя оценки расстояний самых старых звезд, поведение галактик и скорость расширения Вселенной. Идея состоит в том, чтобы вычислить, сколько времени потребуется, чтобы все объекты вернулись в начало.
Ключевым расчетом для датирования является постоянная Хаббла, названная в честь Эдвина Хаббла, который впервые рассчитал скорость расширения Вселенной в 1929 году.
Другой недавний метод использует наблюдения остатка излучения Большого взрыва. Он отображает неровности и колебания в пространстве-времени – космический микроволновый фон или CMB – и отражает условия в ранней вселенной, заданные постоянной Хаббла.
Тем не менее, методы приходят к различным выводам, сказал Джеймс Шомберт, профессор физики в UO. В статье, опубликованной в Astronomical Journal, он и его коллеги раскрывают новый подход, который перекалибрует инструмент измерения расстояния, известный как барионное отношение Талли-Фишера, независимо от постоянной Хаббла.
«Проблема масштаба расстояний, как известно, невероятно трудна, потому что расстояния до галактик огромны, а указатели их расстояний слабы и их трудно калибровать», – сказал Джеймс Шомберт.
Ученые пересчитали подход Тулли-Фишера, используя точно определенные расстояния в линейном вычислении 50 галактик в качестве ориентиров для измерения расстояний до 95 других галактик.
Они отметили, что вселенная управляется рядом математических структур, выраженных в уравнениях. Новый подход более точно учитывает кривые массы и вращения галактик, чтобы превратить эти уравнения в числа, такие как возраст и скорость расширения.
Подход ученых определяет постоянную Хаббла – скорость расширения Вселенной – в 75,1 километра в секунду на мегапарсек, плюс-минус 2.3. Мегапарсек, общая единица измерения космического пространства, равна миллиону парсек. Парсек составляет около 3,3 световых года.
Все значения постоянной Хаббла ниже 70, говорят исследователи, можно исключить с 95-процентной степенью достоверности.
По словам Джеймса Шомберта, традиционно используемые методы измерения за последние 50 лет установили значение 75, но CMB вычисляет показатель 67. Метод CMB, хотя и использует различные допущения и компьютерное моделирование, все же должен прийти к той же оценке, сказал он.
Расчеты, сделанные из наблюдений космического аппарата «Wilkinson Microwave Anisotropy Probe” в 2013 году, определяют возраст Вселенной в 13,77 миллиарда лет, что на данный момент представляет собой стандартную модель космологии Большого взрыва.
Отличающиеся постоянные значения Хаббла от различных методов обычно оценивают возраст вселенной между 12 миллиардами и 14,5 миллиардами лет.
Новое исследование, частично основанное на наблюдениях, проведенных с помощью космического телескопа Спитцера, добавляет новый элемент к тому, как можно установить расчеты для достижения постоянной Хаббла, введя чисто эмпирический метод, используя прямые наблюдения, чтобы определить расстояние до галактик.
James Schombert et al, Using the Baryonic Tully–Fisher Relation to Measure H o, The Astronomical Journal (2020). DOI: 10.3847/1538-3881/ab9d88
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Спросите Итана №99: откуда нам известен возраст Вселенной?
Юность – подарок природы, а старость – произведение искусства.
— Станислав Ежи Лец
Каждую неделю в нашем блоге освещаются чудеса Вселенной. У вас есть возможность отправлять вопросы и предложения в еженедельную колонку «Спросите Итана», и периодически я выбираю один из вопросов, чтобы ответить на него. Сегодняшний вопрос не только получит ответ от Итана – он и задан будет Итаном, только по фамилии Барбур, который спрашивает:
У меня вопрос по астрономии, по сути такой: сколько существует независимых способов измерения возраста вселенной?
Я бы с удовольствием сообщил вам, что таких способов великое множество, и все они указывают на возраст в 13,8 миллиарда лет, точно так же, как существует множество доказательств существования тёмной материи. Но на самом теле их только два, причём один сильно лучше другого.
«Хороший» способ предлагает подумать о том, что в наше время Вселенная расширяется и охлаждается, и понять, что из этого следует, что в прошлом она была горячее и плотнее. Если мы отправимся в прошлое, во всё более ранние времена, то мы обнаружим, что при меньшем объёме Вселенной частицы материи в ней были не только ближе друг к другу, но и длины волн фотонов были короче, поскольку расширение Вселенной растягивало их до такого состояния, в каком мы их видим сегодня.
Поскольку длина волны фотона определяет его энергию и температуру, фотон с меньшей длиной волны более энергичный и горячий. Перемещаясь назад во времени, мы видим повышение температуры, и в какой-то момент достигаем ранних фаз Большого взрыва.
Это важно: существует «самая ранняя» стадия Большого взрыва!
Если мы будем экстраполировать назад бесконечно, мы дойдём до сингулярности, где физика перестаёт работать. Наше современное понимание ранних фаз Вселенной даёт нам понять, что Большому взрыву предшествовала фаза инфляции, и длительность этого состояния не определена.
Говоря о возрасте Вселенной, мы говорим о времени, прошедшем с тех пор, как Вселенную впервые стало возможно описывать через горячий Большой взрыв, и до сегодняшнего дня.
По законам Общей теории относительности, в нашей Вселенной, в которой:
• плотность на крупнейших масштабах равномерна,
• везде действуют одинаковые законы и общие свойства,
• вне зависимости от выбранного направления везде всё одинаково,
• Большой взрыв случился везде одновременно,
существует уникальная связь между её возрастом и расширением всё время её существования.
Иначе говоря, сумев измерить, как расширяется Вселенная сейчас, и как она расширялась в течение своей жизни, мы узнаем, из чего она состоит. Мы можем узнать это через множество наблюдений, включающих:
• Прямые измерения яркости и расстояния до объектов Вселенной, таких, как звёзды, галактики, сверхновые, что позволяет нам построить лестницу космических расстояний.
• Измерение крупномасштабных структур, скоплений галактик, и барионных акустических осцилляций.
• Измерение флюктуаций реликтового излучения, «фотографию» Вселенной, сделанную в возрасте 380 000 лет.
Если сложить всё это вместе, то мы получим Вселенную, состоящую сегодня на 68% из тёмной энергии, на 27% из тёмной материи, на 4,9% из нормальной материи, на 0,1% из нейтрино, на 0,01% из излучения, и, в общем-то, всё.
Рассмотрев сегодняшнее расширение Вселенной, мы сможем провести экстраполяцию назад во времени, узнать историю её расширения, а, следовательно, и возраст.
Полученное число – точнее всего с телескопа Планк, но дополненное и другими источниками, например, измерением сверхновых, ключевого проекта телескопа им. Хаббла по измерению межгалактических расстояний и Слоановским цифровым небесным обзором – мы получим, что возраст Вселенной сегодня 13,81 миллиарда лет с погрешностью всего в 120 миллионов лет. Это значит, что мы уверены в возрасте на 99,1%, что весьма удивительно!
Да, у нас есть разные наборы данных, приводящие к этому заключению, но на самом деле, метод один и тот же. Нам просто повезло, что существует согласованная картинка, на которую они все указывают, но на самом деле, ни одного из этих ограничений самого по себе недостаточно, чтобы сказать «вот такая вот у нас Вселенная». Все они предлагают набор вариантов, и лишь их пересечение говорит нам о том, где мы живём.
Если бы у Вселенной были те же свойства, что и сегодня, но она на 100% состояла бы из нормальной материи, безо всякой тёмной материи и тёмной энергии, то её возраст должен был бы составлять всего 10 миллиардов лет. Если бы во Вселенной было 5% нормальной материи (безо всякой тёмной материи и тёмной энергии), а постоянная Хаббла равнялась бы 50 (км/с)/Мпк, а не 70 (км/с)/Мпк, то Вселенной было бы 16 миллиардов лет. Но комбинация всех точно свойств говорит нам о возрасте в 13,81 миллиарда лет, с малой погрешностью. И это удивительное достижение науки.
Но это один метод. Он главный, лучший, наиболее полный, и на него указывают горы доказательств. Есть и ещё один, и для проверки результатов он очень полезен.
Это то, что мы знаем особенности жизни звёзд, сжигания их топлива и их смерти. Точнее, мы знаем, что у всех звёзд, когда они живы и сжигают основное топливо (проводя синтез гелия из водорода), есть конкретная яркость и цвет, и они удерживают эту яркость и цвет определённое время: пока в их ядрах не начнёт заканчиваться топливо.
В этот момент самые яркие, голубые и массивные звёзды начинают «выключаться» из главной последовательности (изогнутая линия на диаграмме цвет-размер внизу), и превращаться в гигантов и сверхгигантов.
Если найти эту точку выключения у скопления звёзд, сформировавшихся в одно и то же время, мы можем узнать – зная, как работают звёзды – возраст звёзд в скоплении. Посмотрев на самые старые шаровидные скопления, в которых меньше всего тяжёлых элементов, и выключения которых случаются с наименее массивными звёздами, мы обнаружим, что их возраст последовательно оказывается равным примерно 13,2 миллиарда лет, и не более того. (Но тут существует серьёзная погрешность в миллиард лет).
Звёзды возрастом в 12 миллиардов лет и менее встречаются очень часто, но звёзд возрастом в 14 миллиардов лет или более никто не видел, хотя в 1990-х частенько упоминали возраста в 14-16 миллиардов лет (улучшенное понимание звёзд и их эволюции уменьшило эти оценки).
Так что, у нас есть два метода – один из космической истории и один из измерения ближних звёзд – показывающих, что возраст нашей Вселенной находится между 13 и 14 миллиардами лет. Никто бы не удивился, если бы нам было 13,6 или 14,0 миллиардов лет, но нам с очень большой точностью не 13,0 или 15,0 миллиардов лет. Можно с уверенностью называть возраст в 13,8 миллиарда лет – и теперь вы знаете, почему!
Источник
Закон Хаббла
В свое время закон Хаббла сделал переворот в профессиональной астрономии. В начале ХХ века американский астроном Эдвин Хаббл доказал, что наша Вселенная не статична, как казалось ранее, а постоянно расширяется.
Общие сведения
Закон Хаббла – физико-математическая формула, доказывающая, что наша Вселенная постоянно расширяется . Причем расширение космического пространства, в котором находится и наша галактика Млечный путь, характеризуется однородностью и изотропией. То есть, наша Вселенная расширяется одинаково во всех направлениях. Формулировка закона Хаббла доказывает и описывает не только теорию расширение Вселенной, но и главную идею ее происхождения – теорию Большого взрыва .
Наиболее часто в научной литературе закон Хаббла встречается под следующей формулировкой: v=H0*r. В этой формуле v означает скорость галактики, H0 – коэффициент пропорциональности, который связывает расстояние от Земли до космического объекта со скоростью его удаления (этот коэффициент еще называют «Постоянной Хаббла»), r – расстояние до галактики.
В некоторых источниках встречается другая формулировка закона Хаббла: cz=H0*r. Здесь c выступает, как скорость света, а z символизирует собой красное смещение – сдвиг спектральных линий химических элементов в длинноволновую красную сторону спектра по мере их удаления. В физико-теоретической литературе можно обнаружить и другие формулировки данного закона. Однако от разности формулировок суть закона Хаббла не меняется, а его суть заключается в описании того факта, что наша Вселенная непрерывно расширяется во всех направлениях.
Открытие закона
Предпосылкой к открытию закона Хаббла был целый ряд астрономических наблюдений. Так, в 1913 году американский астрофизик Вейл Слайдер обнаружил, что Туманность Андромеды и несколько других огромных космических объектов движутся с большой скоростью, относительно Солнечной системы. Это дало ученому основание предположить, что туманность – это не формирующиеся в нашей галактике планетарные системы, а зарождающиеся звезды, которые находятся за пределами нашей галактики. Дальнейшее наблюдение за туманностями показало, что они не только являются другими галактическими мирами, но и постоянно удаляются от нас. Этот факт дал возможность астрономическому сообществу предположить, что Вселенная постоянно расширяется.
В 1927 году бельгийский ученый-астроном Жорж Леметр экспериментально установил, что галактики во Вселенной удаляются друг от друга в космическом пространстве. В 1929 году американский ученый Эдвин Хаббл при помощи 254-сантиметрового телескопа установил, что Вселенная расширяется и галактики в космическом пространстве удаляются друг от друга. Используя свои наблюдения, Эдвин Хаббл сформулировал математическую формулу, которая по сегодняшний день точно описывает принцип расширения Вселенной, и имеет огромное значение, как для теоретической, так и практической астрономии.
Закон Хаббла: применение и значение для астрономии
Закона Хаббла имеет огромное значение для астрономии. Его широко применяют современные ученые в рамках создания различных научных теорий, а также при наблюдении космических объектов.
Главное значение закона Хаббла для астрономии заключается в том, что он подтверждает постулат: Вселенная постоянно расширяется. Вместе с этим закон Хаббла служит дополнительным подтверждением теории Большого взрыва, ведь, как считают современные ученые, именно Большой взрыв послужил толчком для расширения «материи» Вселенной.
Закон Хаббла позволил выяснить также, что Вселенная расширяется во всех направлениях одинаково. В какой точке космического пространства не оказался бы наблюдатель, если он посмотрит вокруг себя, он заметит, что все объекты вокруг него одинаково от него удаляются. Наиболее удачно этот факт можно выразить цитатой философа Николая Кузанского, который еще в XV веке сказал: «Любая точка есть центр Безграничной Вселенной».
При помощи закона Хаббла современные астрономы могут с высокой долей вероятности просчитывать положение галактик и скоплений галактик в будущем. Точно так же с его помощью можно вычислить предположительное месторасположение любого объекта в космическом пространстве, спустя определенное количество времени.
Интересные факты
- Величина, обратная постоянной Хаббла, равна примерно 13,78 миллиардам лет. Эта величина указывает на то, сколько времени прошло с момента начала расширения Вселенной, а значит, вполне вероятно указывает и на ее возраст.
- Наиболее часто закон Хаббла используют для определения точных расстояний до объектов в космическом пространстве.
3. Закон Хаббла определяет удаление от нас далеких галактик. Что касается ближайших к нам галактик, то здесь его действие не так ярко выражено. Связано это с тем, что эти галактики помимо скорости, связанной с расширением Вселенной, обладают еще и своей собственной скоростью. В связи с этим они могут, как удаляться от нас, так и приближаться к нам. Но, в общем и целом закон Хаббла актуален для всех космических объектов во Вселенной.
Источник