Параллакс солнца больше параллакса луны
Прямое определение расстояний до сравнительно близких небесных тел основано на явлении параллактического смещения. Суть его заключается в следующем. Близкий предмет при наблюдении его из разных точек проецируется на различные расположенные далеко предметы. Так, держа вертикально карандаш на фоне далекого многоквартирного дома, мы видим его левым и правым глазом на фоне разных окон. Для тел Солнечной системы такое смещение на фоне звезд заметно уже при наблюдении из точек, разнесенных на расстояние, сравнимое с радиусом Земли, а для близких звезд — при наблюдениях из точек, разнесенных на расстояние, сравнимое с радиусом орбиты Земли.
11.1. Горизонтальный экваториальный параллакс
Координаты небесных тел, определенные из разных точек земной поверхности, вообще говоря различны, и называются топоцентрическими координатами. Правда, это заметно лишь для тел Солнечной системы. Для устранения этой неопределенности все координаты тел Солнечной системы приводят к центру Земли и называют геоцентрическими. Угол между направлениями на какое-либо светило из данной точки земной поверхности и из центра Земли называется суточным параллаксом p‘ светила (рис. 22). Очевидно, что суточный параллакс равен нулю для светила, находящегося в зените, и максимален для светила на горизонте. Такой максимальный параллакс называется горизонтальным параллаксом светила p. Горизонтальный параллакс связан с суточным простым соотношением:
(37) |
Здесь синусы углов заменены самими углами ввиду их малости.
По сути дела, p — это угол, под которым виден радиус Земли с данного светила. Однако Земля не является идеальным шаром и сплюснута к полюсам. Поэтому на каждой широте радиус Земли свой и горизонтальные параллаксы одного и того же светила разные. Для устранения этих различий принято вычислять горизонтальный параллакс для экваториального радиуса Земли (R0 = 6378 км) и называть его горизонтальным экваториальным параллаксом p0.
Рис. 22. Суточный и горизонтальный параллакс |
Суточный параллакс необходимо учитывать при измерении высот и зенитных расстояний тел Солнечной системы и вносить поправку, приводя наблюдение к центру Земли:
(38) |
Измерив горизонтальный экваториальный параллакс светила p0, можно определить расстояние d до него, т.к.
Заменив синус малого угла p0 значением самого угла, выраженным в радианах, и имея в виду, что 1 радиан равен 206265″, получим искомую формулу:
Замена синуса угла самим углом допустима, так как наибольший из известных горизонтальный экваториальный параллакс Луны равен 57′ (у Солнца p0=8″.79).
В настоящее время расстояния до тел Солнечной системы с гораздо большей точностью измеряются методом радиолокации.
11.2. Годичный параллакс
Угол, под которым с какой-либо звезды виден радиус земной орбиты a, при условии, что он перпендикулярен направлению на нее, называется годичным параллаксом звезды (рис. 23).
Рис. 23. Годичный параллакс |
По аналогии с горизонтальным экваториальным параллаксом, зная годичный параллакс, можно определять расстояния до звезд:
В километрах расстояния до звезд измерять неудобно, поэтому обычно пользуются внесистемной единицей — парсеком пк, определяемой как расстояние, с которого параллакс равен 1″. Само название составлено из первых слогов слов параллакс и секунда. Нетрудно убедиться, что 1 пк = 206 265 а.е. = 3.086 10 18 см. Реже используется такая единица измерения расстояний до звезд, как световой год, определяемый как расстояние, проходимое светом за год (1 пк = 3.26 светового года).
Расстояние до звезды в парсеках определяется через величину годичного параллакса особенно просто
(40) |
60. (477) Параллакс Солнца p0=8″.8, а видимый угловой радиус Солнца . Во сколько раз радиус Солнца больше радиуса Земли?
Решение: Так как параллакс Солнца есть ни что иное, как угловой радиус Земли, видимый с Солнца, следовательно, радиус Солнца во столько же раз больше радиуса Земли, во сколько его угловой диаметр больше параллакса .
61. (482) В момент кульминации наблюденное зенитное расстояние центра Луны (p0=57′) было 50 o 00′ 00″. Исправить это наблюдение за влияние рефракции и параллакса.
Решение: За счет рефракции наблюденное топоцентрическое зенитное расстояние меньше истинного топоцентрического, т.е. . Истинное топоцентрическое зенитное расстояние больше геоцентрического на величину суточного параллакса
.
62.(472) Чему равен горизонтальный параллакс Юпитера, когда он находится от Земли на расстоянии 6 а.е. Горизонтальный параллакс Солнца p0=8″.8.
63. (474) Наименьшее расстояние Венеры от Земли равно 40 млн. км. В этот момент ее угловой диаметр равен 32″.4. Определить линейный радиус этой планеты.
64. (475) Зная, что для Луны p0=57’02».7, а ее угловой радиус в это время rЛ=15’32».6, вычислить расстояние до Луны и ее линейный радиус, выраженные в радиусах Земли, а так же площадь поверхности и объем Луны по сравнению с таковыми для Земли.
65. (483) Наблюденное зенитное расстояние верхнего края Солнца составляет 64 o 55′ 33″, а его видимый радиус . Найти геоцентрическое зенитное расстояние центра Солнца, учтя рефракцию и параллакс.
66. Из наблюдений известны годичные параллаксы звезд Вега (
)
, Сириус (
)
, Денеб (
)
. Определить расстояние до этих звезд в пк и в а.е.
Источник
Определение размеров светил
Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:
Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30′, а все планеты видны невооруженным глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ. Тогда:
Если расстояние D известно, то
где величина р выражена в радианах.
Пример решения задачи
Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30′?
1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?
1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8″ и 57′ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?
Источник
Определение расстояний в Солнечной системе. Горизонтальный параллакс
Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.
Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).
Из треугольника OAS можно выразить величину — расстояние OS = D:
где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.
Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57′. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8″. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.
Известно, что для малых углов sin р ≈ р, если угол р выражен в радианах. В одном радиане содержится 206 265″. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:
или (с достаточной точностью)
Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.
Источник