Пассивный источник энергии солнце лазер лампа
1.1.3. Спектральный состав светаОсновным естественным источником света является солнце. Излучаемый им свет называют белым. В 1672 году Ньютон, пропустив солнечный свет через стеклянную призму, показал, что он состоит из смеси излучений различной длины волны, или, что то же самое — различных цветов, находящихся в примерно равном соотношении. 1.1.3.1. Цветовая температураРазличные источники света излучают свет различного состава. В цветной фотографии очень важно знать состав света, которым освещается объект съемки. Для характеристики света по спектральному составу пользуются понятием цветовая температура. Все нагретые тела являются источником электромагнитного излучения. При низких температурах они испускают лишь невидимое длинноволновое излучение. При повышении температуры тела начинают светиться сначала темно-красным, затем ярко-красным, желтым, белым и наконец, голубовато-белым светом (свечение электросварочной дуги). Таким образом, между температурой светящегося тела и цветностью излучения существует прямая связь. Она детально изучена для абсолютно черного тела (тела, поглощающего все падающее на него излучение). Иными словами, для каждого значения температуры абсолютно черного тела известен состав света, который оно излучает. Исходя из этого спектральный состав света характеризуют цветовой температурой — температурой абсолютно черного тела, при которой оно излучает свет того же спектрального состава, что и исследуемый.
Цветовая температура выражается в единицах абсолютной температуры — Кельвинах. Ее значение характеризует распределение энергии (мощности) световых излучений в зависимости от длины волны (а не температуру источника света). Для абсолютно черного тела это распределение показано на рис. 1.5. С увеличением температуры растет общая энергия излучения, а максимум сдвигается в сторону коротких волн. То есть, чем выше цветовая температура источника света, тем больше в составе его света коротковолновых излучений — голубого, синего и фиолетового цветов. В излучении источника света с низкой цветовой температурой, преобладают длинноволновые составляющие — желтые, оранжевые и красные цвета Свойствами абсолютно черного тела обладают маленькие отверстия в полости непрозрачного тела. Приближается к нему по свойствам поверхность солнца, раскаленный уголь, пламя свечи. Лампы накаливания, фотовспышки и некоторые другие тепловые источники света имеют спектры излучения, похожие по форме на спектры излучения абсолютно черного тела, хотя и с меньшей мощностью излучения. К ним применимо понятие цветовой температуры. К некоторым источникам света: лазерам, газосветным трубкам, светящимся краскам и организмам — понятие цветовая температура неприменимо (более подробно об источниках света и их особенностях см. в разд. 5.1). Цветовая температура некоторых источников света приведена в табл. 1.1,
1.1.3.2. Окраска телСпектральный состав света, прошедшего через прозрачное тело, может в большей или меньшей степени изменяться в зависимости от свойств тела. Если оно пропускает излучение всех длин волн одинаково, то спектральный состав прошедшего через него света не изменяется, а оно само воспринимается как неокрашенное. Примерами таких тел могут служить высокопрозрачные стекла, дистиллированная вода, некоторые прозрачные пластмассы, желатина с распределенными в ней микрокристаллами металлического серебра (фотослой в черно-белой фотографии). Неокрашенные прозрачные тела изменяют только энергию излучения. Тела, которые по-разному пропускают излучения разных длин волн и изменяют тем самым спектральный состав проходящего через них света, воспринимаются как окрашенные. Пусть, например, тело поглощает синие и зеленые лучи сильнее, чем красные. В прошедшем через это тело свете будут преобладать красные лучи, и тело будет восприниматься как окрашенное в красный цвет, что можно интерпретировать как изменение цветовой температуры света (в нашем случае снижение). Способность среды неодинаково пропускать излучения с различной длиной волны описывается кривой спектрального пропускания и обратной ей кривой спектрального поглощения, а также кривой оптической плотности. В фотографии для изменения спектрального состава света используются специальные окрашенные стекла- светофильтры. Наибольшее применение находят следующие: Аддитивные (или зональные, цветоделенные) светофильтры пропускают один из первичных цветов (синий, зеленый или красный) и поглощают два других (рис. 1.6).
Субтрактивные (или корректирующие) светофильтры поглощают один из первичных цветов и пропускают два других (рис. 1.7). Цвет субтрактивных фильтров — голубой, пурпурный и желтый. И аддитивные и субтрактивные фильтры используют в процессе печати цветного фотографического изображения.
Компенсационные светофильтры преобразуют дневной свет в свет со спектральным распределением ламп накаливания и наоборот (используются при съемке). Фильтры неактиничного освещения (лабораторные) имеют максимум пропускания в зоне, в которой светочувствительные слои наименее чувствительны. Для обработки негативных и обращаемых материалов используется фильтр № 170 -очень плотный темно-зеленый фильтр, пропускающий очень слабый свет, (фотолюбители при обработке этих видов фотоматериалов, как правило, работают в полной темноте). При обработке цветных позитивных пленок и фотобумаг применяют менее плотный зеленовато-коричневый фильтр № 166. Большинство предметов, встречающихся в природе, сами свет не испускают. Они становятся видимыми за счет того, что отражают падающий на них свет. Непрозрачные предметы часть падающего на них света обязательно поглощают. Степень поглощения (а следовательно, и отражения) излучений с различными длинами волн неодинакова у разных отражающих поверхностей. Поверхность непрозрачного предмета, отражающая свет всех видимых излучений одинаково, т. е. изменяющая только энергию излучения, воспринимается как неокрашенная — белого, черного или различных градаций серого цвета. Такое отражение называют неизбирательным. Предмет, отражающий (поглощающий) излучения с различными длинами волн неодинаково, т. е. изменяющий спектральный состав отраженного света, воспринимается как окрашенный. Например, если предмет поглощает зеленые и красные лучи и отражает синие, то мы видим его синим. О степени отражения различных излучений можно судить по кривой спектрального отражения, выражающей зависимость энергии отраженного света от, длины волны. Красители — вещества, избирательно поглощающие излучения определенного спектрального состава. Нанося их на поверхность предмета, мы можем существенно изменить его отражательную способность, т. е. изменять их цвет. Подробнее о роли красителей в цветной фотографии см. пп. 2.2.2 и 3.1.2. Окраска (цвет) предмета определяется спектральным составом отраженного от него света. Это значит, что она зависит не только от отражательной способности поверхности, но и от спектрального состава освещающего его света. Если предмет освещать светом разных спектральных составов, то и отраженный свет будет также не одинаковым. Эти факторы, вернее их различные сочетания, предопределяют все встречающееся в природе многообразие цветов несамосветящихся предметов. Источник Солнечная энергия — как преобразуют в электрическую, практическое применениеДата публикации: 26 мая 2020 Что является источником солнечной энергии?Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым основным источником солнечной энергии. Солнце как источник энергии Солнечной системыМы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы осуществляются благодаря энергии, полученной от Солнца. Без солнечных излучений был бы невозможным:
Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии. Что является источником солнечной энергии?В солнечном ядре протекают термоядерные реакции. Из ядер водорода образуется гелий. Для образования одного ядра гелия требуется 4 ядра водорода. На промежуточных стадиях образуется ядра тяжёлого водорода (дейтерия) и ядра изотопа. Эта реакция называется протон-протонной. При реакции небольшое количество массы реагирующих ядер водорода теряется, преобразуясь в огромное количество энергии. Выделяющаяся энергия поддерживает излучение Солнца. Гелиотермальная энергетика как вид автономного питанияВ настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше. Сегодня солнечный свет как источник энергии используется:
Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни. Активные и пассивные системы преобразования солнечной энергииНа сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?
Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением. Солнечная электростанция как источник энергииЧто такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться. Разновидности солнечных электростанций:
Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат. Плюсы и минусы солнечных электростанций
Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана. Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных. Солнечная энергия – энергия будущегоЧем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами. Солнечная энергия как альтернативный источник энергииСпособы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это: Преобразование в электрическую энергиюПутем применения фотоэлектрических элементов Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света. Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности. Путем применения термоэлектрических генераторов.
Преобразование в тепловую энергиюПутем использования коллекторов различных типов и конструкций. Преимущества и недостатки солнечной энергииПреимущества
Недостатки
Сферы применения солнечной энергииНаправлений использования довольно много. Ниже рассматриваются самые востребованные и распространённые. Энергоснабжение частного дома
Здесь стоит сказать, что современные панели вырабатывают электричество даже в сумерках и пасмурную погоду. Заряда аккумуляторных батарей хватает на тёмное время суток. Кроме того, солнечные панели подключаются как вспомогательные, и при необходимости их подменяет основная энергетическая система. Солнечный коллектор для отопления и горячего водоснабженияЗдесь энергия солнца преобразуется в тепловую. Наверное, у многих на дачном участке есть душ с металлическим баком наверху. Он нагревается от солнца и можно мытья нагретой водой. Это простейший вариант такого коллектора. Но современные системы работают значительно эффективнее. В них есть поглощающий элемент, который передаёт тепловую энергию теплоносителю. Есть варианты с водой и воздухом в качестве теплоносителя. Коллекторы чаще всего работают в составе систем горячего водоснабжения частных домов. Нагретый в них теплоноситель попадает в накопитель (бойлер), где нагревает воду. Схема практически такая же, как у электрического бойлера. Только электричество в этом случае не расходуется. Компактные системы с коллектором могут обеспечить бесплатный нагрев воды в доме для семьи на 3─5 человек. Речь идёт об осенне-зимнем периоде. Зимой эффективность подобных систем значительно снижается. Параллельно с установкой таких систем проводятся работы по улучшению изоляции. Если зимы в вашем регионе не суровые, то коллектор вполне может использоваться и зимой. Портативные источники энергииЭтот вид устройств предназначен для получения электрической энергии при отсутствии электрических сетей. Такие переносные аккумуляторы с возможностью зарядки от солнечной панели популярны среди туристов, дачников и т. п. Об этих устройствах можно прочитать в статьях:
КонцентраторыЭтот вид устройств можно назвать экзотикой. Их можно встретить у туристов в составе походных кухонь. Они концентрируют свет параболическим зеркалом на ёмкости с теплоносителем. Что такое солнечная энергияСолнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.
Солнечная энергия является источником возобновляемой и экологически чистой энергии. Как можно оценить величину солнечной энергииСпециалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза. Распределение солнечного излучения на карте планеты Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов. Преобразование солнечной энергии в электричествоФотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
ФотовольтарикаВ этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение. Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество. Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур. А вот как устроен отдельный модуль солнечной панели: Гелиотермальная энергетикаТут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.
Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией. Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия. Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.
Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.
Солнечные аэростатные электростанцииЭто оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть. Сама установка состоит из 4 основных частей:
Перспективы развитияЭнергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее. Распространение в РоссииСолнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:
Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока. По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт. Источник ➤ Adblockdetector |