Первые таблицы движения солнца
Брадлей в 1742 году обнаружил, что средние собственные движения звёзд почти по всему небу отличны от нуля и параллельны некоторому определенному направлению в пространстве. Естественно рассматривать это явление как результат движения Солнца относительно близких к нему звёзд. Изучение движения Солнца в пространстве явилось исторически первой задачей по исследованию звёздной кинематики.
Точка на небесной сфере, к которой направлено движение Солнца, называется апексом движения Солнца, или просто апексом, а диаметрально противоположная ей точка на небесной сфере — антиапексом. Само движение Солнца относительно окружающих его звёзд носит название движения к апексу. Составляющую собственного движения звёзд, вызванную движением Солнца к апексу, иногда называют, как уже говорилось в одной из предыдущих лекций, вековым параллаксом.
Можно рассматривать движение Солнца к апексу относительно всех наблюдаемых звёзд, или же относительно звёзд, отобранных по какому-либо признаку. В пространстве нет выделенной системы отсчёта, относительно которой можно было бы определить движение Солнца. Чтобы определить систему отсчёта, вводят понятие центроида группы объектов. Центроид задается всеми объектами рассматриваемой группы, а скоростью центроида считается средняя скорость движения этих объектов. Каждый из объектов, входящий в рассматриваемую группу (в том числе Солнце), имеет свою, так называемую пекулярную или остаточную скорость относительно центроида этих объектов. Очевидно, что сумма скоростей всех объектов относительно их центроида равна нулю. Центроид можно определить как точку, занимаемую Солнцем, движущуюся относительно его же со скоростью, равной средней скорости объектов в данном элементарном макроскопическом объеме пространства. Этот объем должен быть достаточно велик, чтобы в него попадало много объектов, но при этом составлять малую долю объема всей звёздной системы. Понятие центроида применимо к любой точке объема Галактики. При таком определении понятия центроида звёздная система приобретает свойство непрерывности , а скорости центроидов определяют ее поле скоростей .
Движение Солнца относительно центроида визуально ярких звёзд до 5 m — 6 m , среди которых встречаются как близкие звёзды, так и далекие гиганты и сверхгиганты, получило название стандартного движения Солнца . Округленные значения сферических экваториальных координат точки неба, в которую направлен вектор остаточной скорости Солнца (координаты стандартного апекса) приняты равными A=18 h , D=+30°, а величина скорости движения к апексу равна V0 = 19.5 км/с. Соответствующие координаты стандартного апекса в галактической системе координат есть L = 56°, B = +23°. Компоненты скорости Солнца в галактической системе координат получим по формулам:
|
Отсюда возможно и обратное преобразование:
|
Для стандартного апекса в галактической системе координат имеем: u0 = -10.2км/с, v0 = +15.1 км/с, w0 = +7.4 км/с.
Кроме выделяют так называемое основное движение Солнца , относя его к центроиду близких (в пределах, например, 25 пк от Солнца) звёзд главной последовательности. Оно определяется следующими величинами: V0 = 15.5 км/с, L = 45°, B = +24°. Определение движения Солнца относительно этой группы звёзд более обосновано, чем определение движения относительно разнородной совокупности ярких звёзд.
Наконец, движение Солнца относительно центра инерции Галактики получится прибавлением к основному движению Солнца линейной скорости вращения Галактики на солнечном галактоцентрическом расстоянии, с которой, по предположению, движется центроид окружающих Солнце близких звёзд.
Определить движение Солнца относительно избранного центроида нетрудно по лучевым скоростям объектов, определяющих центроид. Если известны расстояния до объектов, компоненты движения Солнца можно определить и по собственным движениям. Для определенности возьмем объектами нашей выборки звёзды, хотя скорость Солнца можно определять и относительно звёздных скоплений, отдельных газовых облаков, планетарных туманностей и других объектов.
Пусть единственной, кроме остаточной скорости звезды, составляющей движения является отражение движения Солнца в пространстве. Тогда для лучевых скоростей и собственных движений можно записать:
|
В выражениях (9-3) в правых частях штрихами обозначены остаточные компоненты скорости звезды, которые для больших объемов выборок должны согласно определению центроида в среднем компенсироваться. Поэтому можно принять их равными нулю и использовать выражения (9-3) для получения оценок величин компонентов движения Солнца в пространстве методом наименьших квадратов.
Движение Солнца в пространстве, как величина, определяющая систему отсчёта скоростей в Галактике, неоднократно определялось разными авторами относительно различных центроидов. В таблице 9-1 приведены некоторые из этих определений, взятые из работ различных исследователей. В первом столбце таблицы указаны объекты, относительно которых определено пространственное движение Солнца, а в шести последующих — величина этого движения.
|
Для наименьших значений движения Солнца (первые шесть строк таблицы 9-1) ошибки каждого компонента составляют (1 — 2) км/c, для остальных — несколько больше. Хорошо видно, что движение Солнца в пространстве разделяет объекты Галактики по кинематическим признакам на две подсистемы. К первой подсистеме относится большинство звёзд окрестностей Солнца с умеренными скоростями, к этой же подсистеме относятся рассеянные звёздные скопления и зоны HII, при этом более старые объекты показывают несколько большее движение. Очень сильно от этих подсистем отличаются по кинематическим признакам шаровые звёздные скопления, звёзды типа RR Лиры и субкарлики. Отметим, что межзвёздная среда по кинематическим характеристикам не отличается от большинства звёзд окрестностей Солнца.
Отдельно рассмотрим определение скорости Солнца относительно звёзд с круговыми галактическими орбитами. Дело в том, что имеется способ однозначно, независимо от выборки объектов определить точку отсчёта скоростей в окрестности Солнца, связав ее с круговой скоростью движения в Галактике , определив ее как скорость движения по круговой орбите на расстоянии Солнца от центра Галактики. У звёзд, движущихся по орбитам близким к круговым, остаточные скорости должны быть близки к нулю. Для определения движения Солнца относительно центроида звёзд, движущихся по круговым орбитам, необходимо создать большую выборку звёзд и постепенно удалять из нее звёзды с большими остаточными скоростями. В первой строке таблицы 9-1 движение Солнца было определено по выборке ОВ-звёзд окрестностей Солнца (около 450 звёзд), половина из которых была удалена как имеющая наибольшие остаточные скорости относительно среднего значения. Такой выбор базового центроида фиксирует систему отсчёта к наиболее молодым близким звездам поля, которые, по предположению, должны двигаться по круговым орбитам, как и межзвёздная среда, из которой они образовались. (Последнее утверждение верно лишь приблизительно, поскольку, как будет отмечено ниже, основная масса близких ОВ-звёзд принадлежит движущемуся относительно круговой скорости на солнечном галактоцентрическом расстоянии Поясу Гулда.) Одновременно и остаточные скорости самых разных объектов можно изучать относительно одного центроида, связанного физически с Галактикой в целом.
Движение Солнца в пространстве определяет систему отсчёта скоростей в окрестностях Солнца, так называемую локальную систему покоя (английская аббревиатура — LSR).
Источник
Видимое годовое движение солнца на небесной сфере
Истинное движение Земли — Видимое годовое движение Солнца на небесной сфере — Небесный экватор и плоскость эклиптики — Экваториальные координаты Солнца в течение года
Истинное движение Земли
Чтобы понять принцип видимого движения Солнца и других светил на небесной сфере, рассмотрим сперва истинное движение Земли. Земля является одной из планет солнечной системы. Она непрерывно вращается вокруг своей оси.
Период вращения ее равен одним суткам, поэтому наблюдателю, находящемуся на Земле, кажется, что все небесные светила обращаются вокруг Земли с востока на запад с тем же периодом.
Наклон оси вращения Земли к плоскости орбиты
Но Земля не только вращается вокруг своей оси, но и обращается также вокруг Солнца по эллиптической орбите. Полный оборот вокруг Солнца она совершает за один год. Ось вращения Земли наклонена к плоскости орбиты под углом 66°33′. Положение оси в пространстве при движении Земли вокруг Солнца все время остается почти неизменным. Поэтому Северное и Южное полушария попеременно бывают обращены в сторону Солнца, в результате чего на Земле происходит смена времен года.
При наблюдении неба можно заметить, что звезды на протяжении многих лет неизменно сохраняют свое взаимное расположение.
Звезды “неподвижны” лишь потому, что находятся очень далеко от нас. Расстояние до них так велико, что с любой точки земной орбиты они видны одинаково.
А вот тела же солнечной системы — Солнце, Луна и планеты, которые находятся сравнительно недалеко от Земли, и смену их положений мы можем легко заметить. Таким образом, Солнце наравне со всеми светилами участвует в суточном движении и одновременно имеет собственное видимое движение (оно называется годовым движением), обусловленное движением Земли вокруг Солнца.
Представьте себе картину — Луна взяла и исчезла с орбиты Земли. Чем нам может грозить такой поворот событий? Подробнее об этом
Видимое годовое движение Солнца на небесной сфере
Наиболее просто годовое движение Солнца можно объяснить по рисунку приведенному ниже. Из этого рисунка видно, что в зависимости от положения Земли на орбите наблюдатель с Земли будет видеть Солнце на фоне разных созвездий. Ему будет казаться, что оно все время перемещается по небесной сфере. Это движение является отражением обращения Земли вокруг Солнца. За год Солнце сделает полный оборот.
Что представляет собой эклиптика
Большой круг на небесной сфере, по которому происходит видимое годовое движение Солнца, называется эклиптикой. Эклиптика — слово греческое и в переводе означает затмение. Этот круг назвали так потому, что затмения Солнца и Луны происходят только тогда, когда оба светила находятся на этом круге.
Следует отметить, что плоскость эклиптики совпадает с плоскостью орбиты Земли.
Видимое годовое движение Солнца по эклиптике происходит в том же направлении, в котором Земля движется по орбите вокруг Солнца, т. е. оно перемещается к востоку. В течение года Солнце последовательно проходит по эклиптике 12 созвездий, которые образуют пояс Зодиака и называются зодиакальными.
Пояс Зодиака образуют следующие созвездия: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог и Водолей. Вследствие того, что плоскость земного экватора наклонена к плоскости орбиты Земли на 23°27 ‘ , плоскость небесного экватора также наклонена к плоскости эклиптики на угол е=23°27′.
Наклон эклиптики к экватору не сохраняется постоянным (вследствие воздействия на Землю сил притяжения Солнца и Луны), поэтому в 1896 г. при утверждении астрономических постоянных решено было наклон эклиптики к экватору считать усредненно равным 23°27’8″,26.
Небесный экватор и плоскость эклиптики
Эклиптика пересекается с небесным экватором в двух точках, которые называются точками весеннего и осеннего равноденствий. Точку весеннего равноденствия принято обозначать знаком созвездия Овен Т, а точку осеннего равноденствия — знаком созвездия Весов —. Солнце в этих точках соответственно бывает 21 марта и 23 сентября. В эти дни на Земле день равен ночи, Солнце точно восходит в точке востока и заходит в точке запада.
Точки весеннего и осеннего равноденствия – места пересечения экватора и плоскости эклиптики
Точки эклиптики, отстоящие от точек равноденствий на 90°, называются точками солнцестояний. Точка Е на эклиптике, в которой Солнце занимает самое высокое положение относительно небесного экватора, называется точкой летнего солнцестояния, а точка Е’, в которой оно занимает самое низкое положение, называется точкой зимнего солнцестояния.
В точке летнего солнцестояния Солнце бывает 22 июня, а в точке зимнего солнцестояния — 22 декабря. В течение нескольких дней, близких к датам солнцестояний, полуденная высота Солнца остается почти неизменной, в связи с чем эти точки и получили такое название. Когда Солнце находится в точке летнего солнцестояния день в Северном полушарии самый длинный, а ночь самая короткая, а когда оно находится в точке зимнего солнцестояния — наоборот.
В день летнего солнцестояния точки восхода и захода Солнца максимально удалены к северу от точек востока и запада на горизонте, а в день зимнего солнцестояния они имеют наибольшее удаление к югу.
Движение Солнца по эклиптике приводит к непрерывному изменению его экваториальных координат, ежедневному изменению полуденной высоты и перемещению по горизонту точек восхода и захода.
Известно, что склонение Солнца отсчитывается от плоскости небесного экватора, а прямое восхождение — от точки весеннего равноденствия. Поэтому когда Солнце находится в точке весеннего равноденствия, его склонение и прямое восхождение равны нулю. В течение года склонение Солнца в настоящий период изменяется от +23°26′ до —23°26′, переходя два раза в год через нуль, а прямое восхождение от 0 до 360°.
Солнце имеет форму шара или сплюснуто у полюсов? Давайте разберемся! Подробнее об этом
Экваториальные координаты Солнца в течение года
Экваториальные координаты Солнца в течение года изменяются неравномерно. Происходит это вследствие неравномерности движения Солнца по эклиптике и движения Солнца по эклиптике и наклона эклиптики к экватору. Половину своего видимого годового пути Солнце проходит за 186 суток с 21 марта по 23 сентября, а вторую половину за 179 суток с 23 сентября по 21 марта.
Неравномерность движения Солнца по эклиптике связана с тем, что Земля на протяжении всего периода обращения вокруг Солнца движется по орбите не с одинаковой скоростью. Солнце находится в одном из фокусов эллиптической орбиты Земли.
движение Земли по орбите
Из второго закона Кеплера известно, что линия, соединяющая Солнце и планету, за равные промежутки времени описывает равные площади. Согласно этому закону Земля, находясь ближе всего к Солнцу, т. е. в перигелии, движется быстрее, а находясь дальше всего от Солнца, т. е. в афелии — медленнее.
Ближе к Солнцу Земля бывает зимой, а летом — дальше. Поэтому в зимние дни она движется по орбите быстрее, чем в летние. Вследствие этого суточное изменение прямого восхождения Солнца в день зимнего солнцестояния равно 1°07′, тогда как в день летнего солнцестояния оно равно только 1°02′.
Различие скоростей движения Земли в каждой точке орбиты вызывает неравномерность изменения не только прямого восхождения, но и склонения Солнца. Однако за счет наклона эклиптики к экватору его изменение имеет другой характер. Наиболее быстро склонение Солнца изменяется вблизи точек равноденствия, а у точек солнцестояния оно почти не изменяется.
Знание характера изменения экваториальных координат Солнца позволяет производить приближенный расчет прямого восхождения и склонения Солнца.
Для выполнения такого расчета берут ближайшую дату с известными экваториальными координатами Солнца. Затем учитывают, что прямое восхождение Солнца за сутки изменяется в среднем на 1°, а склонение Солнца в течение месяца до и после прохождения точек равноденствия изменяется на 0,4° в сутки; в течение месяца перед солнцестояниями и после них — на 0,1° в сутки, а в течение промежуточных месяцев между указанными — на 0,3°.
Источник