Законы Кеплера
Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и гелиоцентрическая система Коперника – где Солнце является центральным телом.
И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца — эпицикл. Однако, расхождения в большей своей части не были устранены.
В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.
Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников.
Первый закон Кеплера (закон эллипсов)
Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов которой находится Солнце.
Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна.
После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.
Второй закон Кеплера (закон площадей)
Радиус-вектор планеты описывает в равные промежутки времени равные площади.
Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади. Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную.
На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.
Третий закон Кеплера (гармонический закон)
Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.
По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешностью не более 1 %.
На основании этого закона можно вычислить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наоборот — по этому же закону можно рассчитать орбиту, зная период обращения.
Дальнейшее развитие
И хотя законы Кеплера имели относительно невысокую погрешность, все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения.
Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.
Видео
Источник
Планета движется вокруг солнца по эллипсами
Цель работы: изучение движения тел под действием сил тяготения; проверка третьего закона Кеплера.
На смену геоцентрической системе мира, созданной в начале нашей эры Птолемеем, пришла гелиоцентрическая система, созданная Коперником. Несколько позднее немецкий астроном И. Кеплер на основе астрономических наблюдений установил законы движения планет вокруг Солнца.
Согласно 1-му закону Кеплера любая планета движется вокруг Солнца по замкнутой кривой, которая называется эллипсом (внешне похож на овал). Солнце находится в одном из фокусов этого эллипса. Эллипс имеет два фокуса: это две такие точки внутри кривой, сумма расстояний от которых до произвольной точки эллипса постоянна. Оказывается, что орбиты всех планет Солнечной системы лежат примерно в одной плоскости. Большинство планет движутся по орбитам-эллипсам, которые близки к окружностям. Лишь Марс и Плутон имеют сравнительно вытянутые орбиты.
Второй закон Кеплера устанавливает, что скорость планеты больше тогда, когда она в своем движении находится ближе к Солнцу (в так называемой точке перигелия) и меньше тогда, когда она находится на наибольшем расстоянии от Солнца (в точке афелия). Третий закон Кеплера устанавливает связь между периодом обращения планеты вокруг Солнца и ее средним расстоянием от Солнца, он применяется ко всему коллективу планет Солнечной системы.
Законы Кеплера получили свое объяснение лишь после открытия законов тяготения. Физические объекты участвуют в гравитационном взаимодействии, т.е. они притягиваются друг к другу. Гравитационное взаимодействие обладает всеобщей универсальностью: ему подвержены все материальные объекты и даже физические поля. Закон всемирного тяготения был открыт И. Ньютоном. Он утверждает, что два неподвижных точечных тела взаимодействуют друг с другом с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними, т.е.
(1) |
где γ называют гравитационной постоянной. Этот закон справедлив и для взаимодействия однородных шаров, но в этом случае под r следует понимать расстояние между их центрами.
Рассмотрим движение планеты вокруг Солнца (рис. 1). Планета движется под действием силы F (силы тяготения (1)), которая действует вдоль линии, соединяющей центры тел. Движением Солнца можно пренебречь, так как его масса М гораздо больше массы планеты m. Пусть орбита планеты представляет собой окружность, тогда скорость движения планеты направлена по касательной к этой окружности и перпендикулярно действующей силе. Скорость в этом случае постоянна по величине, поэтому планета движется с центростремительным ускорением. Второй закон Ньютона для этого движения выглядит следующим образом:
Отсюда получаем, что . Период обращения планеты вокруг Солнца
. Выразив из предыдущей формулы v, получаем
. Возведя правую и левую части этой формулы в квадрат, после преобразований получим:
(2) |
Это и есть третий закон Кеплера, который можно сформулировать следующим образом: отношение куба расстояния от планеты до Солнца к квадрату периода ее обращения вокруг Солнца есть величина постоянная, одинаковая для всех планет Солнечной системы. В случае движения по эллипсу, когда расстояние от планеты до Солнца при движении изменяется, в законе фигурирует некоторое среднее расстояние, т.е. полусумма максимального и минимального расстояний от данной планеты до Солнца. Закон Кеплера справедлив для любой планетной системы, а также для системы спутников какой-либо конкретной планеты, например, для системы спутников Юпитера или Урана. В последнем случае под М в формуле (2) понимается масса соответственно Юпитера или Урана.
Источник
Потенциальная энергия взаимодействия двух тел
Пусть два тела с массами M и m находятся на расстоянии R друг от друга. Тогда энергия их взаимодействия равна
Полная энергия
Если тело находится в гравитационном поле и имеет некоторую скорость, то его полная энергия равна
Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.
Теорема вириала
В случае кругового движения кинетическая энергия в 2 раза меньше по модулю потенциальной. Поэтому
Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.
При Eпол Система с отрицательной полной энергией называется гравитационно связанной .
При Eпол = 0 тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.
При Eпол > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.
Первая космическая скорость
Это скорость движения по круговой траектории вблизи поверхности Земли
Это минимальная скорость, которую нужно сообщить телу, чтобы оно преодолело притяжение Земли и стало спутником. Для Земли примерно 7,9 км/с.
Вторая космическая скорость
Это скорость движения по параболической траектории
Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца . Находится из условия равенства нулю полной энергии системы. Для Земли примерно 11,2 км/с.
Третья космическая скорость
Это скорость, при которой тело преодолевает притяжение Солнца
где v – орбитальная скорость планеты, v 2 – вторая космическая скорость для планеты. Для Земли примерно 16,6 км/с.
Задачи:
Звезда и планета обращаются вокруг общего неподвижного центра масс по круговым орбитам. Найдите массу планеты m, если известно, что скорость движения планеты равна v 1 , а скорость движения и период обращения звезды равны v 2 и T соответственно.
Если бы все линейные размеры Солнечной системы были пропорционально сокращены так, чтобы среднее расстояние между Солнцем и Землей стало 1 м, то какова была бы продолжительность одного года? Считайте, что плотность небесных тел при этом не меняется.
Автоматическая станция обращается вокруг планеты Марс с периодом T = 18 ч. Максимальное удаление от поверхности Марса (в апоцентре) a = 25000 км, минимальное (в перицентре) p = 1380 км. По указанным параметрам орбиты станции определите отношение массы Марса к массе Земли. Радиус Марса rм = 3400 км, радиус Земли rз = 6400 км.
Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты 422 тыс. км.
Вычислить параболическую скорость на поверхности Луны, RЛ = 0.27 радиуса Земли, MЛ = 1/81 массы Земли.
Источник
Планета движется вокруг солнца по эллипсами
Johannes Kepler, 1571–1630
Немецкий астроном. Родился в Вюртембурге. Начав с изучения богословия в Тюбингенской академии (позднее университет), увлекся математикой и астрономией и вскоре получил приглашение на должность преподавателя математики в гимназии австрийского города Грац. Там он снискал себе репутацию блестящего астролога благодаря ряду сбывшихся метеорологических прогнозов на 1595 год. Начиная с 1598 года Кеплер и другие протестанты стали подвергаться в католическом Граце жестоким религиозным гонениям, и в 1600 году ученый по приглашению датского астронома Тихо Браге переехал в Прагу. Работы Кеплера основывались на наблюдениях, сделанных Тихо Браге. Его дальнейшая жизнь сложилась трагично. Он жил в бедности и умер от лихорадки по дороге в Австрию, куда он отправился в надежде получить причитающееся ему жалованье.
Ч ем ближе планеты к Солнцу, тем больше линейная и угловая скорости их обращения вокруг Солнца. Период обращения планет вокруг Солнца по отношению к звездам называется звездным периодом.
Такой период обращения Земли относительно звезд называется звездным годом. Наименьший звездный период обращения у планеты Меркурий. У Марса он составляет около 2 лет, у Юпитера — 12 лет и, все возрастая с удалением от Солнца, у Плутона доходит до 250 лет.
Заслуга открытия законов движения планет принадлежит выдающемуся австрийскому ученому Кеплеру. В начале XVII в. Кеплер установил три закона движения планет. Они названы законами Кеплера.
Первый закон Кеплера: каждая планета обращается вокруг Солнца по эллипсу, в одном аз фокусов которого находится Солнце.
Степень вытянутости эллипса характеризуется величиной его эксцентриситета. Эксцентриситет равен отношению расстояния фокуса от центра к длине большой полуоси. В пределе при совпадении фокусов и центра эксцентриситет равен нулю и эллипс превращается в окружность.
Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка называется афелием. Орбиты планет — эллипсы, мало отличающиеся от окружностей, их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.
Эксцентриситеты орбит у комет приближаются к единице. При е=1 второй фокус эллипса удаляется (в пределе) в бесконечность, так что эллипс становится разомкнутой кривой, называемой параболой. Ее ветви в бесконечности стремятся стать параллельными. При е>1 орбита является гиперболой. Двигаясь по параболе или гиперболе, тело только однажды огибает Солнце и навсегда удаляется от него.
Кеплер открыл свои законы, изучая периодическое обращение планет вокруг Солнца. Ньютон, исходя из законов Кеплера, открыл закон всемирного тяготения. При этом он нашел, что под действием взаимного тяготения тела могут двигаться друг относительно друга по эллипсу, в частности по кругу, по параболе и по гиперболе. Выяснилось, что некоторые кометы огибают Солнце, двигаясь по параболе или по гиперболе. В таком случае они уходят из солнечной системы и уже не являются ее членами.
Средняя скорость движения Земли по орбите 30 км/с. Орбита Земли близка к окружности, а скорость Земли по орбите близка к круговой на расстоянии Земли от Солнца. Параболическая скорость для Земли будет равна √2*30 км/с = 42 км/с. При такой скорости относительно Солнца тело покинет солнечную систему.
Третий закон Кеплера: квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.
Источник