Теория электрической Вселенной. Часть 2: Что такое плазма?
Электромагнитные силы и сила гравитации
Как мы увидели в предыдущей главе, согласно официальной науке гравитация является основной силой, контролирующей движение небесных тел. Учёные, как правило, не принимают в расчёт электромагнитные силы при своих расчётах движения небесных тел. Однако на самом деле, электромагнитные силы сильнее силы гравитации в 10 39 раз, делая, таким образом, электромагнетизм фактически основной «движущей силой» в нашей Вселенной.
Сравнительная сила гравитации и электричества была продемонстрирована в опыте Роберта Милликена, [12] лауреата Нобелевской премии по химии в 1923 году. Милликен продемонстрировал, как капля масла, заряженная всего лишь одним электроном (после ионизации рентгеновскими лучами), может быть поднята в воздух электромагнитной силой при условии, что эта капля подвержена воздействию сильного электрического поля. [13] Таким образом, электромагнитная сила, воздействующая на один единственный электрон, может преодолеть силу тяжести целой планеты, воздействующей на каплю масла.
Точнее говоря, распылённые Милликеном капельки масла были намного меньше обычных капель масла. Типичный радиус капельки составляет 0,1 микрона, [14] в то время как радиус обычной капли — примерно 1000 микронов (1 мм). Если капля воды содержит примерно 10 21 атомов, [15] то в одной капельке мы найдем около 10 17 атомов. Таким образом, Милликен продемонстрировал, что электромагнитная сила одного единственного электрона может противодействовать весу (т.е. силе тяжести) 10 17 атомов.
Преобладание электромагнитной силы над силой тяжести поражает ещё больше при увеличении расстояния:
Сила магнитного поля, созданного электрическим током (например, ток Биркеланда в космическом масштабе), уменьшается обратно пропорционально расстоянию от электрического потока. Как электростатические, так и гравитационные силы между звёздами уменьшаются пропорционально квадрату расстояния между ними. [16]
Приведем конкретный пример. Если электромагнитная сила уменьшается в 100 раз при 100-кратном увеличении расстояния между двумя космическими телами, то сила гравитации уменьшается в 10 000 раз при том же изменении расстояния. Если гравитация, наравне с электромагнитными силами, играет важную роль внутри небесных тел, то на больших расстояниях между космическими телами (звезда-звезда, звезда-планета, звезда-комета и т.д.) сила гравитации, как правило, пренебрежимо мала и основным «игроком» становится электромагнитная сила.
Что представляет из себя плазма?
Прежде чем дальше углубиться в тематику, давайте рассмотрим явление «плазмы» или ионизированного газа. Чтобы понять электрическую природу Вселенной, нам следует сначала разобраться с природой её главной составляющей. Ирвинг Ленгмюр ввёл в обращение понятие «плазмы» из-за сходства ионизированного газа с «живыми» клетками крови. Действительно, тот факт, что плазма ведёт себя как живой организм, [17] является довольно необычным в сравнении с другими агрегатными состояниями:
В лаборатории Беркли по исследованию радиации Дэвид Бом начал работать над тем, что станет поворотным пунктом в его работе над плазмой. Плазма — это газ, состоящий из плотно сконцентрированных электронов и положительно заряженных ионов (атомов с положительным зарядом). К его удивлению, он обнаружил, что ионизированные электроны перестали вести себя как индивидуальные частицы и начали вести себя так, как будто они были частью большего взаимосвязанного целого. Хотя их индивидуальные движения казались на первый взгляд случайными, огромное количество электронов было в состоянии производить эффекты, которые говорили о их поразительной организованности. Как какое-то амебоидное существо, плазма постоянно воспроизводила себя и окружала все инородные примеси на её границе так, как какой-либо биологический организм блокирует инородные вещества в его защитной оболочке. Бом был настолько поражён этими органическими свойствами, что, по его словам, у него часто складывалось впечатление, будто это море электронов было «живым». [18]
Живая или нет, плазма является наиболее часто встречающимся агрегатным состоянием во Вселенной, как по массе, так и по объёму. Она составляет 99% всей видимой Вселенной [19] и, таким образом, является намного более распространённой, чем три других агрегатных состояния: твёрдое, жидкое и газовое. Все звёзды состоят из плазмы, и ею наполнено даже межзвёздное пространство. График ниже показывает, что плазма встречается в любой среде, при любых температурах и в любых типах материи. К категории плазмы относят даже металлы, так как они представляют собой твёрдую материю со свободными электронами [20] (см. в левом верхнем углу на рис. 4).
Парадоксально, но плазма — наиболее часто встречающееся агрегатное состояние — является наименее изученным явлением. В то время как студентам физики преподают свойства твёрдых тел, жидкостей и газов, о плазме практически не упоминают. Итак, давайте отдадим ей должное.
Плазма — это материя (обычно газ, однако она также может принимать твёрдую или жидкую форму), в которой определённое количество частиц было ионизировано. Ионизированная частица — это частица, потерявшая как минимум один электрон. Таким образом, в то время как «обычный» газ состоит из неионизированных частиц, плазма состоит из диссоциированных положительных частиц и негативных электронов.
Во время ионизации приток энергии выталкивает электрон с его орбиты из атома. В итоге мы имеем один свободный электрон (чёрные точки на рисунке) и один положительно заряженный ион (красные точки). Их заряды разделены, и газ ионизирован. Это и есть плазма.
[12]: ‘Robert Millikan — Biographical’, Nobel Prize.
[13]: Для подъёма одной капельки в воздух, напряжение электрического поля должно составлять 32 100 вольт. Для дальнейшего объяснения см. главу 26: «Ураганы, молнии и торнадо».
[14]: Harrison, R. G., ‘Atmospheric Electricity And Cloud Microphysics’, стр. 3
[15]: ‘How many atoms are in a single drop of water’, MadSci: Chemistry. См.: www.madsci.org/posts/archives/2000-10/971190308.Ch.r.html
[16]: Scott, D. E., The Electric Sky, стр. 44
[17]: Alfred, J., ‘Plasma life forms’, Unexplained mysteries. См.: www.unexplained-mysteries.com/column.php?id=111062
[18]: Talbot, M., Holographic Model of the Universe, стр. 39
[19]: Peratt, A. L., Advances in Numerical Modeling of Astrophysical and Space Plasmas, стр. 98
[20]: Там же, стр. 97
Комментарий: Читайте все переведенные главы из книги Пьерра Лескодро (Pierre Lescaudron) «Земные изменения и взаимосвязь между человеком и космосом» (Earth Changes and the Human Cosmic Connection), и другие интересные статьи, имеющие отношение к этой же тематике:
Pierre Lescaudron
Пьерр Лескодро (M.Sc, MBA) родился в 1972 г. в Тулузе, Франция. Он сделал карьеру в административном руководстве, консалтинге и обучении аспирантов высокотехнологичных областей науки и промышленности.
Позже он стал редактором SOTT.net, исполнив свою заветную мечту изучать науку, технологию и историю.
Ему особенно нравится «связывать различные факты в единое целое» и сочетать области науки, которые традиционно считаются несвязанными между собой.
Источник
Плазма во Вселенной
Состояние вещества меняется в зависимости от температуры. Например, вода при отрицательных (по шкале Цельсия) температурах находится в твердом состоянии, в интервале от 0 до 100 °С — в жидком, выше 100 °С — в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются, и газ превращается в плазму. При температурах более 1000000 °С плазма полностью ионизована — она состоит только из электронов и положительных ионов. Солнце, большинство звёзд, туманности – все они состоят из полностью ионизованной плазмы. Внешняя часть земной атмосферы – ионосфера — тоже стоит из плазмы. Полярные сияния, молнии, в том числе шаровые, — все это различные виды ионизированного газа, наблюдать которые можно в естественных условиях на Земле.
В конце 1928 году Ирвинг Ленгмюр впервые использовал слово «плазма» для обозначения того, что сейчас принято называть четвертым агрегатным состоянием вещества. В своей работе для Национальной Академии наук США, он обозначил этим неологизмом «состояние, содержащее сбалансированный заряд ионов и электронов». Само слово «плазма» позаимствовано из греческого языка и обозначает «вылепленный, сформировавшийся». Этим фонемой древние эллины называли яркие молнии, образующие сложный рисунок на небе. Четвертое агрегатное состояние вещества впервые было получено в 1879 году английским химиком и физиком сэром Уильямом Круксом. Однако, для того, чтобы выработать четкое научное представление о природе плазмы, потребовалось почти тридцать лет.
В настоящее время известно, что плазма представляет собой полностью или частично ионизированный газ, суммарный заряд которого равен или стремиться к нулю. Тем не менее, раздельное существование в газе ионов и электронов наделяет плазму свойствами, отличными от обычного газового состояния. Работы Ирвинг Ленгмюра легли в основу физики плазмы – его первые эксперименты в этой области включали в себя исследования электропроводности плазмы и ее реакции при взаимодействии с магнитными полями.
Сам ионизированный газ вплоть до середины 70-ых, годов считался некоей «панацеей», способной решить все энергетические проблемы человечества. Позднее было обнаружено другое уникальное свойство плазмы – она способна зачищать и стерилизовать любые поверхности на атомарном уровне, заменяя традиционные «влажные» химические методы. Плазменные технологии имею широкий спектр применений, особенно в области контролируемого ядерного синтеза. В быту плазма распространена в меньшей степени. Единственное практичное изделие для дома на основе плазменных технологий – это газоразрядный дисплей, более известный как «плазменная панель».
Источник
Четвертое состояние вещества
Физическое состояние вещества зависит от сочетаний температуры и давления. В зависимости от этих параметров вещество может принимать разные агрегатные состояния, такие как твердое тело, жидкость или газ. Однако существуют и другие фундаментальные состояния вещества. Одно из них — плазма, которая может возникать при определенных условиях. Термин «плазма» впервые был применен к ионизированному газу в 1929 году Ирвингом Лэнгмюром, американским химиком и физиком.
Агрегатное состояние вещества можно рассматривать как состояние элементарных частиц, составляющих вещество, и прочность связей между ними. Например, в (кристаллическом) твердом теле существуют сильные межмолекулярные связи, удерживающие атомы вместе в решетчатом образовании, придающие ему веществу определенный объем и форму. В жидкости эти силы так слабы, что вещество больше не имеет определенной формы, а в газе они уже настолько незначительны, что атомы или молекулы могут двигаться независимо друг от друга, но они все еще остаются атомами и молекулами. Плазма — это состояние вещества, которое имеет достаточно энергии для отделения электронов от ядра атома.
Атомы содержат одинаковое количество как положительно, так и отрицательно заряженных частиц. Из-за того, что протоны в ядре окружены равным количеством отрицательно заряженных электронов, каждый атом электрически нейтрален.
Плазма образуется, когда под воздействием тепловой или другой энергии ряд атомов высвобождают свои электроны. В результате атомы становятся положительно заряженными (ионами), а высвобожденные электроны могут свободно перемещаться. Когда достаточное количество атомов ионизируется, чтобы существенно повлиять на электрические характеристики газа, он становится плазмой. Проще говоря, плазма — это горячий ионизированный газ, состоящий примерно из одинакового количества положительно заряженных ионов и отрицательно заряженных электронов.
Свойства плазмы
Характеристики плазмы значительно отличаются от характеристик обычных нейтральных газов, поэтому плазма считается особым «четвертым состоянием вещества».
Наиболее важный эффект ионизации заключается в том, что плазма приобретает некоторые электрические свойства, которых неионизированный газ не имеет:
1) появляется электропроводность. Для того чтобы вещество обладало электропроводностью, в нем должны быть свободные заряженные частицы. В металлах эти свободные частицы распределяются между атомами, а электрический ток проявляется в форме направленного движения электронов, переходящих от одного атома к другому. Вещество в состоянии плазмы само по себе состоит из свободных заряженных частиц;
2) плазма реагирует на электрические и магнитные поля. Например, поскольку плазма состоит из электрически заряженных частиц, на нее сильно влияют электрические и магнитные поля, а нейтральные газы — нет. Примером такого влияния является захват энергичных заряженных частиц вдоль линий геомагнитного поля с образованием радиационных поясов Ван Аллена.
Помимо внешних электромагнитных полей, таких как магнитное поле Земли или межпланетное магнитное поле, на плазму воздействуют электрические и магнитные поля, создаваемые в самой плазме посредством локальных концентраций заряда и электрических токов, появляющихся в результате движения ионов и электронов. Силы, оказываемые этими полями на заряженные частицы, из которых состоит плазма, действуют на большие расстояния и придают поведению частиц целостное коллективное качество, которое нейтральные газы не проявляют;
3) несмотря на существование локализованных концентраций заряда и электрических потенциалов, плазма электрически «квазинейтральна», потому что в совокупности содержит примерно равное количество положительно и отрицательно заряженных частиц, распределенных так, что их заряды аннулируются.
Где в природе можно увидеть плазму?
Самый большой сгусток плазмы, который мы постоянно наблюдаем — это Солнце. Огромное количество тепла, выделяемое звездой, отрывает электроны от атомов водорода и гелия, из которых состоит Солнце. Фактически оно, как и другие звезды, представляет собой большой плазменный шар. Увидеть потоки и вспышки солнечной плазмы в высоком разрешении можно в красивейшем видео NASA «Термоядерное искусство» в конце статьи.
По оценкам, 99% вещества в наблюдаемой вселенной находится в плазменном состоянии, отсюда и выражение «плазменная вселенная». (Фраза «наблюдаемая вселенная» является важной характеристикой: считается, что примерно 90% массы вселенной содержится в «темной материи», состав и состояние которой неизвестны.) Звезды, звездные и внегалактические струи, и межзвездная среда является примером астрофизической плазмы. В нашей солнечной системе Солнце, межпланетная среда, магнитосферы и / или ионосферы Земли и других планет, а также ионосферы комет и некоторых планетных лун состоят из плазмы.
Огонь — это самая настоящая плазма. Хотя температура пламени, при горении различных веществ на Земле намного ниже, чем температура на Солнце, и оно гораздо менее ионизировано, но пламя огня проявляет все основные свойства плазмы. Даже небольшие и относительно холодные виды пламени, такие как пламя свечи, сильно реагируют на электрические поля и даже обладают значительной электропроводностью (большей, чем у воздуха, но меньшей, чем у железа).
Еще в природе плазменным состоянием вещества можно охарактеризовать молнии и искры разрядов статического электричества.
Где и как используется плазма?
Плазма широко используется в газоразрядных лампах для создания искусственного освещения, кроме того, во многих световых рекламных вывесках используется аргоновая или неоновая плазма.
Плазма также используется в сварке и резке металлов, а все газовые лазеры (на диоксиде углерода, гелий-неоновый, криптоновый, и другие) в действительности плазменные: в этих лазерах газовые смеси ионизованы электрическим разрядом.
Потенциально, одно из наиболее важных применений плазмы — это источник энергии ядерного синтеза.
Высокотемпературные плазмы настолько горячие, что внутри них могут происходить ядерные реакции. В этих условиях определенные типы атомов с легкими ядрами, такие как изотопы водорода, могут быть объединены в более тяжелые ядра. При этом выделяется большое количество энергии, которую можно было бы использовать для выработки электричества. Проблема в том, что получить настолько горячую и долговечную плазму очень трудно, но прогресс, уже достигнутый учеными, впечатляет.
Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех Оставайтесь с нами, друзья! Впереди ждёт много интересного!
Источник