Меню

Плотность фотонов во вселенной

Ученые подсчитали весь свет Вселенной

Новости партнеров

Используя данные космического гамма-телескопа NASA «Fermi», ученые подсчитали количество всех когда-либо существовавших фотов во Вселенной, что поможет раскрыть историю звездообразования и в конечном итоге «добраться» до Большого Взрыва. Результаты исследования представлены в журнале Science.

«Из данных, собранных телескопом «Fermi», мы смогли измерить все количество когда-либо возникшего звездного света. Это позволило нам лучше понять процесс эволюции звезд и получить увлекательную информацию о том, как Вселенная породила свое сияющее содержимое», – рассказывает Марко Ажелло, ведущий автор исследования из Университета Клемсона (США).

Cчитается, что формирование первых звезд началось спустя несколько сотен миллионов лет после Большого Взрыва. Сейчас в наблюдаемой Вселенной зафиксировано около двух триллионов галактик и триллионы триллионов звезд. Согласно новому измерению, число фотонов (частиц видимого света), выпущенных в космос звездами, оценивается в 4×10 84 . Или иными словами: 4 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 фотонов.

Несмотря на огромное количество, интересно отметить, что, за исключением света, который исходит от Солнца и Млечного Пути, остальная часть звездного света, достигающая Земли, чрезвычайно тусклая и эквивалентна 60-ваттной лампочке, видимой в полной темноте с расстояния 2,5 километра. Именно поэтому ночное небо для невооруженного глаза такое темное.

Блазары и космический туман

Космический телескоп «Fermi» в июне 2018 года отметил свой 10-летний юбилей. За это время мощная обсерватория предоставила огромное количество данных о гамма-лучах и их взаимодействии с внегалактическим фоновым излучением (EBL), которое представляет собой космический туман, состоящий из всего ультрафиолетового, видимого и инфракрасного света, испускаемого звездами или пылью в их окрестностях. Ученые проанализировали почти девять лет данных о сигналах гамма-излучения 739 блазаров.

Блазары – это галактики, содержащие сверхмассивные черные дыры, которые способны производить струи энергетических частиц почти со скоростью света. Гамма-кванты, образующиеся внутри этих джетов, в конечном итоге сталкиваются с космическим туманом, оставляя наблюдаемый отпечаток. Это позволило команде измерить плотность тумана не только в конкретном месте, но и в определенный момент времени в истории Вселенной.

Гамма-фотоны, пролетающие сквозь туман звездного света, имеют большую вероятность поглощения. Измеряя, сколько фотонов было «потеряно» по дороге к Земле, ученые установили, насколько густой был туман, а также измерили как функцию времени, сколько всего света было во всем диапазоне длин волн.

Проблема далеких галактик

Одним из препятствий, с которыми сталкивались предыдущие исследования истории звездообразования во Вселенной, было то, что некоторые галактики слишком далеки или слишком слабы, чтобы быть доступными для современных телескопов. Команда сумела обойти это, используя данные «Fermi» для анализа внегалактического фона.

Звездный свет, ускользающий даже из самых отдаленных галактик, в конечном итоге становится частью EBL. Поэтому точные измерения этого космического тумана, которые только недавно стали возможными, устранили необходимость оценки выбросов света из ультрадалеких галактик.

«Используя блазары на разных расстояниях от нас, мы измерили полный звездный свет в разные периоды времени. Мы получили общий звездный свет каждой эпохи – один, два, шесть миллиардов лет назад и так далее – вплоть до момента формирования первых звезд, что позволило нам восстановить EBL и определить историю звездообразования во Вселенной наиболее эффективным образом», – пояснил Вайдехи Палия, соавтор исследования из Университета Клемсона.

От «Fermi» до «James Webb»

Когда высокоэнергетические гамма-лучи сталкиваются с низкоэнергетическим видимым светом, они превращаются в пары электронов и позитронов. Способность «Fermi» обнаруживать гамма-лучи в широком диапазоне энергий делает его уникальным для картирования космического тумана.

Читайте также:  Может вселенная это атом

«Ученые давно пытались измерить EBL. Однако очень яркие объекты Солнечной системы делали это непреодолимо сложным. Наша техника нечувствительна к ближайшему свету и, таким образом, справилась с этими трудностями», – добавил Абхишек Десаи, соавтор исследования из Университета Клемсона.

Образование звезд, которое происходит при коллапсе плотных областей молекулярных облаков, достигло своего пика около 11 миллиардов лет назад. Но хотя рождение новых светил с тех пор замедлилось, оно никогда не прекращалось.

«Звездообразование – это великий космический конвеер и утилизатор энергии, материи и металлов. Это двигатель Вселенной. Без эволюции звезд у нас не было бы фундаментальных элементов, необходимых для существования жизни», – сказал Дитер Хартманн, член научной команды из Университета Клемсона.

Понимание звездообразования также имеет последствия для других областей астрономии, включая исследования космической пыли, эволюции галактик и темной материи. Анализ команды обеспечит будущие миссии, в частности, космический телескоп NASA «James Webb», материалом для изучения ранней эволюции звезд.

«Первые миллиарды лет истории Вселенной – очень интересная эпоха, которая еще не была исследована современными инструментами. Наше измерение позволяет заглянуть в глубину веков. Возможно, однажды мы найдем способ вернуться к Большому Взрыву. Это наша конечная цель», – заключил Марко Ажелло.

Источник

Каких частиц во Вселенной больше всего?

Каких частиц в видимой части нашей Вселенной больше всего? Физик-теоретик Дон Пейдж пишет в своем эссе, что в ней преобладают гравитоны, число которых может достигать 10 112 . Давайте разберемся, как он пришел к такому заключению.

NASA / JPL-Caltech / Harvard-Smithsonian Center for Astrophysics

Первым делом разберемся с «обычными» элементарными частицами, в существовании которых сомневаться не приходится, — протонами, электронами, фотонами и нейтрино. Для этого вычислим их среднюю концентрацию, а потом умножим на объем видимой части Вселенной.

Для удобства будем считать все величины в планковских единицах, в которых постоянная Планка, гравитационная постоянная, постоянная Больцмана, скорость света и коэффициент пропорциональности в законе Кулона полагаются равными единице: ħ = G = k = c = 4πε = 1. Если в тексте не указано, в чем именно измеряется размерная величина (например, плотность или расстояние), это значит, что она измеряется в планковских единицах. Кроме того, придерживаясь современных космологических представлений, предположим, что эволюция Вселенной описывается метрикой Фридмана-Леметра-Робертсона-Уолкера, в которой масштабный параметр a(t) растет степенным образом на ранних этапах и экспоненциально на поздних. Другими словами, эволюцию молодой Вселенной определяет материя, а старой — темная энергия:

Здесь t — это возраст Вселенной, а H — значение постоянной Хаббла в такой далекий момент времени, когда темная энергия окончательно «перевесит» материю. Найти это значение несложно, поскольку оно определяется космологической постоянной Λ = 3H 2 , величина которой в планковских единицах примерно равна Λ ≈ 3π/5 3 2 100 ≈ 2,9 × 10 −122 . Это дает значение примерно в 1,2 раз меньше текущей постоянной Хаббла H0.

Важно заметить, что наблюдаемая Вселенная с хорошей точностью является плоской (собственно, этот факт уже учтен в выписанной метрике). Это значит, что плотность нашей Вселенной близка к критической и ее можно вычислить из общих соображений: ρ = ρcr = 3H0 2 /8πG ≈ (13/3000) × 2 −400 . Учитывая, что вклад барионной материи в эту плотность составляет всего 4,5 процента, и принимая во внимание, что бо́льшая часть барионов — это протоны, можно найти среднюю плотность барионов в видимой Вселенной: nb ≈ 1,06 × 10 −105 . Это отвечает примерно одной частице на четыре кубических метра. Поскольку в среднем материя не заряжена, среднюю плотность электронов также можно оценить этой величиной.

Читайте также:  Как правильно формировать мысли для вселенной

В то же время средняя плотность фотонного газа nγ напрямую связана с его температурой — если быть более точным, nγ ≈ 0,24 × Tγ 3 . Поскольку температура реликтового излучения известна и примерно равна Tγ ≈ (160/3 8 ) × 2 −100 (в привычных единицах Tγ ≈ 2,7 Кельвина), мы можем вычислить значение для средней плотности фотонов: nγ ≈ 1,73 × 10 −96 . Если перевести это в привычные единицы, то получится, что в одном кубическом сантиметре находится около 747 фотонов. Аналогичные оценки для нейтрино примерно в 1,2 раза меньше и составляют nν ≈ 1,42 × 10 −96 .

Теперь попробуем оценить среднюю плотность гравитонов. Поскольку аналог реликтового излучения для гравитонов должен иметь гораздо меньшую температуру, плотность гипотетических частиц будет меньше плотности фотонов, если предположить, что их функции распределения совпадают. С другой стороны, квантовые флуктуации во время инфляции могли вызвать образование большого числа низкочастотных гравитонов, плотность которых превысила бы плотность частиц с более высокими частотами. Оценим частоту таких гравитонов наименьшей возможной величиной, то есть предположим, что длина их волны сравнима с радиусом наблюдаемой Вселенной R: ω = π/R ≈ 1,18 × 10 −61 . В таком случае средняя плотность гравитонов будет примерно равна ng ≈ H* 2 H0 2 /2π 2 ω, где H* — такое значение постоянной Хаббла, при которой длина волны гравитонов превысила текущий размер Хаббла H0 −1 .

С другой стороны, выражение для плотности гравитонов можно переписать через плотность инфляционной потенциальной энергии V* = 3H* 2 /8π. Величина этой энергии зависит от амплитуды тензорных возмущений, возникавших во время инфляции. На данный момент явных свидетельств в пользу существования таких возмущений нет. Тем не менее, полностью их исключить тоже нельзя: последние измерения группы Plank ограничивают отношение амплитуд тензорных и скалярных возмущений во время инфляции величиной r −72 ≲ 2,5 × 10 −73 .

Наконец, оценим объем Вселенной, чтобы перевести плотность частиц в их количество. Расстояние до самой далекой наблюдаемой структуры (реликтового излучения) составляет примерно 46 миллиардов световых лет, или примерно R ≈ 2,65 × 10 61 в планковских единицах. Заметим, что здесь нет противоречия с тем, что возраст Вселенной равен всего 13,8 миллиарда лет. Предполагая, что видимая часть Вселенной имеет форму шара, мы легко находим ее объем: V ≈ 7,85 × 10 184 . Умножая на него вычисленные ранее плотности, находим число частиц в видимой Вселенной:

  • Число барионов Nb ≈ 9,34 × 10 79
  • Число фотонов Nγ ≈ 1,36 × 10 89
  • Число нейтрино Nν ≈ 1,11× 10 89
  • Число «обычных» частиц Nparticle ≈ 2,48 × 10 89
  • Число гравитонов Ng ≈ 2,0 × 10 112 ≈ 8,0 × 10 22 × Nparticle

Таким образом, число гравитонов значительно (более чем на двадцать порядков) превосходит число «обычных» частиц. Правда, экспериментальных подтверждений их существования пока что нет (если не считать гравитационные волны, которые можно объяснить и без привлечения новых частиц). Более того, маловероятно, что они появятся в ближайшее время — для рождения гравитонов нужны огромные энергии, не достижимые на современных коллайдерах. Тем не менее, если гравитоны все-таки существуют, похоже, что Вселенная состоит в основном из них.

Читайте также:  Про частицу не во вселенной

Источник

Сколько фотонов во Вселенной и почему свет не так быстр, как нам кажется?

Из чего состоят солнечные лучи? Насколько велика их скорость? На уроках физики в школе рассказывают, что свет имеет двойственную природу – это и волны, и частицы одновременно. Эти составные части излучения называют фотонами. Скорость света также не раз упоминалась в физических и математических задачах (300 тысяч километров в секунду), но наверняка многие люди не осознают, насколько это число, с одной стороны большое, а с другой стороны, – вовсе не бесконечное и даже маленькое.

Стремясь к цели сосчитать частицы света, нельзя забывать о возрасте Вселенной (по подсчётам учёных – 13,7 миллиарда лет). Поскольку даже те фотоны, которые были выпущены древней, давно умершей звездой, всё ещё движутся где-то в космосе, причём необязательно в видимом человеку излучении, такие частицы-волны способны накапливаться и в инфракрасном, и в ультрафиолетовом спектре. В сумме это называют внегалактическим фотонным излучением ( Extragalactic Background Light ).

Посчитать количество выпущенных звёздами фотонов учёным помогли галактические центры, выбрасывающие плазму – блазары. Их особенностью является то, что они ослабевают при прохождении через них фотонов. Именно это помогло исследователям оценить количество и интенсивность света, испущенного звёздами за время существования Вселенной. Было проанализировано 739 блазаров, и по подсчётам учётных суммарное число фотонов, испущенных звёздами за время существования Вселенной, достигло 4*10^84 частиц. И это число продолжает расти, ведь активные звёзды непрерывно испускают фотоны, а также в космосе постоянно рождаются новые светила.

Почему скорость света не такая большая, как нам кажется?

Недаром какие-то мгновенные, молниеносные действия сравнивают со скоростью света. Фотоны распространяются очень быстро – человек не способен определить задержку между, например, появлением луча из фонарика и тем моментом, когда он достигает препятствие на пути и освещает его. Величина скорости света постоянная. Она одинакова в любых условиях и составляет 3*10^8 метра в секунду.

Скорость света хоть и велика, но не бесконечна. Относительно маленькие расстояния (в сравнении с дистанциями в космосе) фотоны преодолевают за доли секунды, человек даже не замечает такие маленькие промежутки времени. Именно из-за этого явления людям кажется, будто свет достигает любой точки Вселенной мгновенно.
Однако в космическом пространстве всё немного по-другому. Здесь уже расстояния измеряются в сотнях миллионов и даже миллиардах километров. Например, Земля удалена от Солнца в среднем на 149 600 000 километров или 1,496*10^11 метров.

Чтобы найти время, за которое фотоны, выпущенные звездой, достигнут планеты, потребуется разделить расстояние на скорость света. В результате получится чуть больше 8 минут. А это уже вполне ощутимый человеком промежуток времени.

Если рассматривать объекты за пределами Солнечной системы, то миллиардов километров не хватит для измерений этих расстояний. Для этого используется специальная единица – «световой год». Это расстояние, преодолеваемое фотонами за один земной год. Тут уже свет вовсе не кажется таким молниеносным – ведь он доходит от источника до точки в космосе спустя годы!

Люди редко задумываются о том, что скорость распространения фотонов конечна, ведь на планете, где мы живем расстояния крошечные, если сравнивать их с удаленностью объектов в космосе. Однако если применять скорость света к масштабам Вселенной, то становится понятно, что свет проходит расстояние не моментально, а также, что размеры и дистанции в космосе значительно превышают привычные человеку.

Источник

Adblock
detector