Плотность нейтрино во вселенной
НЕЙТРИНО ВО ВСЕЛЕННОЙ
Нейтрино — это элементарная частица, обладающая огромной проникающей способностью. Существование такой частицы физик В. Паули предсказал еще в 1930 году. Эта частица понадобилась ученому для того, чтобы объяснить, куда девается часть энергии при бета-распаде. Бета-частица — это электрон. Когда происходит радиоактивный распад ядер с испусканием электронов, один химический элемент превращается в другой (так, тритий превращается в гелий). Но измерения показывают, что часть энергии при этом утрачивается, не регистрируется. Эту энергию уносит нейтрино, которое очень слабо взаимодействует с веществом и поэтому остается незамеченным физическими приборами. Проникающая способность нейтрино действительно фантастична — оно пролетает сквозь Землю, Солнце и вообще сквозь любые небесные тела без каких-либо проблем. Это и хорошо и плохо. Плохо потому, что для того, чтобы изучить нейтрино, надо его поймать. А сделать это трудно. А хорошо потому, что нейтрино может принести нам информацию из самых недоступных мест, например из самой центральной области Солнца и других звезд.
Далее мы будем говорить о нейтрино вообще, хотя существует три типа разных нейтрино. Это нейтрино электронные, мюонные и тау-нейтрино. Каждый тип нейтрино участвует только в определенных, специфических для него реакциях.
Ученые изучали нейтрино многие десятилетия. Они не сомневались, что нейтрино играет очень важную роль во Вселенной. И действительно, оказалось, что нейтрино является главной частицей во Вселенной. Академик М. Марков, специалист по физике нейтрино, так писал об этой частице: «Современнику трудно гадать, какое истинное место займет нейтрино в физике будущего. Но свойства этой частицы столь элементарны и своеобразны, что естественно думать, что природа создала нейтрино с какими-то глубокими, пока для нас не всегда ясными «целями».
Вселенная имеет ячеистую структуру, похожую на пчелиные соты. Это значит, что в сверхскоплениях галактик сами галактики и их скопления сосредоточены в тонких слоях, которые образуют стенки ячеек. Внутренность ячеек практически пуста. Если сравнить эту структуру с пчелиными сотами, то можно сказать, что в ребрах этих «сот» плотность галактик особенно велика.
Наблюдения показывают, что движение галактик в их скоплениях происходит таким образом, как будто в пространстве между галактиками имеется какая-то невидимая масса. Эта масса своим тяготением оказывает влияние на движущиеся объекты. Только по этим движениям мы можем судить об этой массе. Никак иначе она себя не проявляет. Это скрытая, невидимая масса. По-видимому, она окружает и большие галактики. Об этом свидетельствует характер движения карликовых галактик, а также других объектов, находящихся вокруг них. Ученые, однако, рассчитали, что в областях скопления галактик этой скрытой массы должно быть в 20 раз больше, чем той массы, которую можно видеть, наблюдать и которая сосредоточена в самих галактиках.
Во Вселенной нейтрино остались с момента Большого Взрыва, а точнее, с того начального периода расширения, когда горячее плотное вещество имело очень высокую температуру и было непрозрачным не только для света, но и для нейтрино. Тогда происходили быстрые реакции превращения друг в друга нейтрино, электронов, электромагнитных квантов и других элементарных частиц. После первых десятков секунд с начала расширения Вселенной фотонов в единице объема было примерно втрое больше, чем нейтрино (вместе с антинейтрино). За все время эволюции Вселенной это отношение три к одному сохраняется неизменным. Оно справедливо и для настоящего времени. Фотоны, возникшие во время Большого Взрыва, регистрируются и сейчас. Это реликтовое излучение. Потоки нейтрино (реликтового нейтрино) также есть, но их измерить трудно. Правда, ученые могут уверенно предсказать, сколько должно быть реликтовых нейтрино. Расчеты показывают, что в каждом кубическом сантиметре должно быть (содержится) около 150 реликтовых нейтрино. Реликтовых фотонов в этом же объеме содержится около 500. По формуле Эйнштейна энергию можно пересчитать в массу. Оказалось, что плотность массы реликтового электромагнитного излучения примерно в 2000 раз меньше, чем средняя плотность обычного вещества во Вселенной. Это пренебрежимо мало. Средняя плотность массы реликтового нейтрино (пересчитанная из его энергии) также пренебрежимо мала.
У нейтрино кроме массы расчетной имеется и некоторая масса покоя. Она была измерена и для электронных нейтрино составляет примерно 35 эВ (электронвольт). Это значит, что электронные нейтрино, поскольку их масса покоя не равна нулю, не обязаны двигаться со скоростью света. Скорость их движения может быть меньше скорости света. Более того, они не только могут двигаться с любой скоростью, но могут вообще находиться в состоянии покоя.
Проведенные эксперименты показали, что нейтрино в 20 тысяч раз легче электрона и в 40 миллионов раз легче протона. Хотя масса покоя нейтрино и очень мала, его во Вселенной очень много. Мы говорим о реликтовых нейтрино. В кубическом сантиметре нейтрино в среднем почти в миллиард раз больше, чем протонов. По сути, нейтрино является главной составной частью массы материи во Вселенной. Расчеты показывают, что средняя плотность электронных нейтрино во Вселенной примерно в 10–30 раз больше плотности всего другого, «не нейтринного» вещества. Это значит, что в настоящее время именно тяготение нейтрино является главной действующей силой, которая определяет законы расширения Вселенной. Все остальное (кроме нейтрино) составляет только 3 — 10 % «примеси» к основной массе Вселенной — к массе нейтрино. А раз так, то мы можем утверждать, что живем в нейтринной Вселенной.
После Большого Взрыва Вселенная расширяется. Это расширение будет происходить до тех пор, пока средняя плотность во Вселенной не достигнет критического значения. Ученые считают, что критическая плотность равна 10–29 г/см3. Если не учитывать наличия нейтрино, то средняя плотность во Вселенной примерно в сто раз меньше критического значения. Но если нейтрино учесть, то она приближается к критическому пределу. Когда она его достигнет, то должно начаться сжатие Вселенной. Проследим роль нейтрино при формировании структуры Вселенной.
После Большого Взрыва в начале расширения Вселенной вещество представляло собой почти однородную расширяющуюся горячую плазму. Затем из-за гравитационной неустойчивости эта плазма стала фрагментироваться, сбиваться в комки. Это положило начало скоплениям галактик. Но во всех этих процессах надо учитывать роль нейтрино, поскольку главным действующим лицом здесь выступает сила тяготения. А сила тяготения, вызванная нейтрино, намного больше, чем сила тяготения, обусловленная всем другим, не нейтринным веществом Вселенной. Роль нейтрино в процессе фрагментации вещества Вселенной выглядит примерно так.
Вскоре после начала расширения Вселенной в распределении плотности вещества во Вселенной были случайные, очень маленькие неоднородности. В это время нейтрино имеет очень высокую энергию и проходит свободно сквозь любые сгустки вещества. Скорость нейтрино в это время приближается к скорости света. Поэтому нейтрино в определенной мере выравнивают неоднородности. При этом распределяются нейтрино более равномерно. Но это происходит только в малых пространственных масштабах в районах, сравнительно малых по линейным размерам нейтринных сгущений. Это и понятно, поскольку из сравнительно мелких сгущений нейтрино успевают вылететь и перемешаться с другими нейтрино достаточно быстро. При этом усредняются, сглаживаются все неоднородности. С течением времени все большие и большие (по размерам) неоднородности нейтрино успевают «рассосаться». Все это возможно только благодаря тому, что у нейтрино сохраняется очень большая скорость, которая близка к скорости света. Но с течением времени скорость нейтрино постепенно уменьшается. Уже примерно через 300 лет после расширения Вселенной скорость нейтрино становится значительно меньше скорости света. Поэтому нейтрино уже неспособно (ему не хватает скорости) вылетать из комков большого размера. Поэтому такие комки, плотность вещества в которых сначала только немного превышает среднюю, могут усиливаться тяготением, сгущаться и расти, пока среда не распадется на отдельные сжимающиеся облака из нейтрино.
Из сказанного выше можно заключить, что выравнивание плотности успело произойти только в участках с размерами, не превышающими 300 световых лет. В больших масштабах, то есть в нейтринных сгустках большего размера, повышенная плотность нейтрино сохранялась, поскольку нейтрино не успело из них вылететь. В последующий период скорость движения нейтрино резко падала. При этом взаимное их тяготение приводило к увеличению повышенной плотности. Затем эти сгущения дали начало нейтринным облакам. Из приведенных выше рассуждений следует, что масса этих нейтринных облаков должна определяться количеством тех нейтрино, которые находились в сфере радиусом 300 световых лет через 300 лет после начала расширения Вселенной.
Массу такого нейтринного облака можно рассчитать. Все необходимые данные для этого есть, поскольку масса покоя нейтрино определена. Такой расчет дает, что масса типичного нейтринного облака составляет 1015 солнечных масс. Специалисты утверждают на основании общефизического анализа, что каждое нейтринное облако должно приобрести не форму шара, а форму блина. Затем из таких облаков-блинов образуются соты, то есть выкристаллизовывается ячеистая структура.
Что же происходит с обычным (не нейтринным) веществом? Обычное вещество в начале расширения было распределено в пространстве почти равномерно. Масса его во много раз меньше суммарной массы нейтрино. В начальной стадии расширения Вселенной это вещество находилось в виде горячей плазмы. По прошествии трехсот тысяч лет после начала расширения обычное вещество настолько охлаждается, что из состояния плазмы оно превращается в нейтральный газ. К этому времени, спустя миллион лет после начала расширения, давление газа резко падает. Только потом холодный нейтральный газ начинает сгущаться в поле тяготения возникающих нейтринных облаков. При этом нейтральный газ стягивается к центральной части нейтринных облаков. Далее из этого сгущающегося нейтрального газа постепенно возникают скопления галактик, галактики и звезды. Значит, все выглядит так. В центре нейтринного облака-блина образуется большое скопление галактик, масса которого в 30 раз меньше массы нейтринного облака.
Источник
НЕЙТРИНО ВО ВСЕЛЕННОЙ
Теперь мы возвращаемся к главному герою нашего повествования — к нейтрино. К сказанному в начале главы добавим следующее. До последнего времени считалось общепринятым, что нейтрино не имеют массы покоя и, подобно фотону, всегда движутся со скоростью света.
Давно и внимательно изучались процессы, в которых участвуют нейтрино и которые могут играть важную роль в астрофизике.
Было, в частности, установлено, что нейтрино в просторах Вселенной очень много, почти столь же много, как и реликтовых электромагнитных квантов — реликтовых фотонов. Как мы видели в предыдущей главе, дело в том, что нейтрино, как и фотоны, должны остаться во Вселенной с того начального периода расширения, когда горячее плотное вещество имело очень высокую температуру и было непрозрачным не только для света, но и для нейтрино. Тогда происходили быстрые реакции превращения друг в друга нейтрино, электронов, электромагнитных квантов и других элементарных частиц. Эти процессы могут быть надежно рассчитаны методами современной физики, и результаты расчетов показывают, что после первых десятков секунд с начала расширения Вселенной фотонов в единице объема было примерно втрое больше, чем нейтрино (вместе с антинейтрино).
Это отношение для реликтовых фотонов и нейтрино остается практически неизменным и во время последующей эволюции Вселенной, вплоть до наших дней. Мы не можем сегодня каким-либо прямым способом регистрировать реликтовые нейтрино, так как уж очень мала их энергия: при нулевой массе покоя нейтрино его энергия составляет около 5*10 -4 электронвольт (эВ). Однако астрофизики могут предсказать, сколько их должно быть. Как уже отмечалось, в .каждом кубическом сантиметре содержится около 500 реликтовых фотонов. Реликтовых нейтрино должно быть втрое меньше, то есть около 150 частиц в кубическом сантиметре.
Напомним также, что каждый реликтовый фотон имеет энергию и соответствующую массу 10 -36 грамма, и, таким образом, плотность массы реликтового электромагнитного излучения составляет около 5 • 10 -34 г/см 3 . Это примерно в 2000 раз меньше, чем средняя плотность обычного вещества во Вселенной.
Из сказанного можно сделать вывод, что плотность массы реликтового электромагнитного излучения пренебрежимо мала. То же самое можно было бы сказать и о нейтрино: средняя плотность его массы (это, разумеется, не масса покоя, а масса, определяемая энергией частицы) еще меньше, чем плотность электромагнитного излучения, — она составляет около 1,5 • 10 -34 r/CM 3 . Таким образом, ролью реликтовых нейтрино в сегодняшней Вселенной можно и вовсе пренебречь — они не только имеют ничтожную суммарную массу, но еще и практически не взаимодействуют с остальным веществом Вселенной. По крайней мере, такое мнение о роли нейтрино в нынешней Вселенной существовало у большинства специалистов до весны 1980 года.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Плотность нейтрино во вселенной
Можно ли взвесить нейтрино? Что это за частица, кем и когда она была открыта? Почему вопрос о массе нейтрино является одним из центральных в физике? Об экспериментах по поиску массы нейтрино в трития — физики Владимир Лобашев и Семен Герштейн.
Владимир Михайлович Лобашев — академик РАН
Семен Соломонович Герштейн — академик РАН
Когда эта частица впервые появилась в физике, ученые уже твердо знали, что существуют такие элементарные частицы, как нейтроны и протоны — «кирпичики», составляющие атомное ядро. Нейтрон не имеет электрического заряда, и по этой причине он получил такое название.
В 1931 г. известный швейцарский физик Вольфганг Паули пришел к выводу, что в природе должна существовать еще одна нейтральная частица с массой, намного меньшей, чем у нейтрона, как он говорил, «маленький нейтрон». Когда он излагал эту идею с трибуны одного международного научного совещания, итальянский физик Энрико Ферми перебил его словами: «Называйте его „нейтрино“»!
Дело в том, что окончание «ино» соответствует русским суффиксам «чик» или «ушк». Так что нейтрино в переводе с итальянского будет означать «маленький нейтральный», или просто «нейтрончик». Так нейтрино было изобретено Паули, а окрещено Ферми.
На первый взгляд, нейтрино никакой роли в нашей жизни не играют, хотя через каждый квадратный сантиметр нашего тела ежесекундно проходит несколько миллиардов нейтрино, но мы их не замечаем. Однако без нейтрино не «работало» бы Солнце и звезды, не было бы всего того, что нас окружает, не было бы нас самих.
Вопрос о массе нейтрино — один из центральных в физике. За последние примерно 30 лет было выяснено, как взаимодействуют между собой основные элементарные частицы: лептоны и кварки. Были выяснены переносчики этих взаимодействий. Мы узнали, как взаимодействуют между собой элементарные частицы, как устроено сильное ядерное взаимодействие, слабое и электромагнитное. Чего мы не знали и не знаем до сих пор: как возникают массы у этих частиц. И для ответа на этот вопрос исключительно важно знать массу нейтрино.
Дело в том, что если взять стандартную массу — массу протона, то электрон примерно в 2 тыс. раз, а нейтрино примерно в 1 млрд раз легче, чем протон. Самая тяжелая частица, так называемый открытый в начале годов, весит примерно в 200 раз больше протона. То есть спектр масс фундаментальных частиц очень широк, и мы совершенно не понимаем, чем это обусловлено.
Для того чтобы понять, как устроены массы, строятся гигантские суперколлайдсры, с помощью которых надеются найти частицу, называемую хиггсом, благодаря взаимодействию с которой возникают массы у других частиц. И в этом смысле эксперимент по «взвешиванию» нейтрино — узловой.
Современные достижения физики нейтрино представляют интерес прежде всего для физики высоких энергий. То, что у нейтрино есть масса, но она очень мала, свидетельствует о совершенно новых явлениях, которые должны происходить при высоких энергиях, еще недоступных эксперименту. Стало очевидным, что модель физики элементарных частиц и элементарных взаимодействий — Стандартная модель — неполна и надо искать новые явления за ее пределами. В ближайшие 10 лет это будет очень важное направление в физике высоких энергий.
Кроме того, результаты, о которых сегодня шла речь, имеют космологический аспект. Видимо, во Вселенной существуют реликтовые нейтрино, причем суммарная плотность всех типов нейтрино — около 350 частиц в 1 см³. Давно стоит вопрос: какую часть полной плотности вещества во Вселенной составляют нейтрино? Из данных, полученных группой В. М. Лобашева, следует, что плотность нейтрино меньше, чем 10% полной плотности вещества во Вселенной. Значит, 90% вещества во Вселенной — не нейтрино. Что же это такое? Исследования первичного нуклеосинтеза показывают, что плотность других известных частиц — протонов и нейтронов — во Вселенной тоже небольшая — меньше 5%. Итак, более 85% вещества во Вселенной составляют неизвестные нам сегодня частицы. Получается, что физики открыли множество разнообразных частиц и сами же обнаружили: Вселенная состоит не из них, а из совершенно неизвестного. Открытие этих частиц, выяснение их свойств — замечательная задача. Есть надежда, что она будет решена в обозримом будущем.
В общем, аналогичные эксперименты уже отчасти проводились, но результаты дали несколько иные. 5 июня на крупной международной конференции «Нейтрино 98» в японском городе Такаяма уже было объявлено, что у нейтрино есть масса. Для того чтобы заметить крошечную массу нейтрино, японским физикам пришлось построить детектор стоимостью в сто миллионов долларов и упрятать его в старой шахте для добычи цинка на глубине больше километра под горой Икена в Японских Альпах. Громадный цилиндрический детектор содержит 12,5 миллионов галлонов сверхчистой воды, окруженной тысячами специальных приборов — фотоумножителей, которые могут регистрировать свет. Возникает он вот откуда: нейтрино летят с огромной энергией и те, что налетают на атомы воды, выбивают из них тоже весьма «энергичные» электроны. А эти частицы пронизывают воду и испускают излучение Вавилова — Черенкова. Вот и регистрируют фотоумножители. В гигантском цилиндре за день наблюдается пять — шесть нейтринных взаимодействий.
Нейтрино в установку прилетали как сверху, рождаясь во взаимодействиях космических лучей с атмосферой, так и снизу — Земли. слабости взаимодействия с веществом толща нашей планеты для большинства частиц из потока нейтрино — не преграда. По соображениям симметрии поток нейтрино «сверху» и «снизу» должен быть одинаков — атмосфера ведь везде одна и та же, как и поток космических лучей. Но те, что возникли «снизу», должны еще лететь до установки более 12 тысяч километров. Экспериментальный результат состоит в том, что «снизу» в установку поступало в два раза меньше нейтрино, чем сверху. Это может значить лишь одно: по пути к детектору сквозь Землю часть нейтрино «поменяла сорт» и установка их «не видит» — она настроена лишь на электронные нейтрино. А такое превращение по пути, как говорилось, возможно лишь, если у нейтрино есть масса. Поэтому делается вывод о ее наличии. Ради объективности стоит отметить, что подобные поиски начались более двадцати лет назад. Самый известный результат — обнаружение массы у нейтрино в начале восьмидесятых годов московскими экспериментаторами из Института теоретической и экспериментальной физик и под руководством профессора В. А. Любимова. Опыты были невероятно сложны, а чувствительность так высока, что измерения приходилось проводить ночью, чтобы их не искажали искры от трамвайных дуг. Позднее оказалось, что результат был неправильным, но он пробудил колоссальный интерес во всем мире к поискам массы нейтрино. До этого задача казалась неразрешимой, а москвичи тогда показали, что можно и нужно пробовать. И вот через двадцать лет этот поиск увенчался успехом.
Это открытие имеет беспрецедентное значение не только для физики элементарных частиц, но и для космологии. Хотя обнаруженная масса нейтрино ничтожно мала — в десять миллионов раз меньше, чем у электрона, — этих частичек невероятно много в космосе (в 50 миллиардов раз больше, чем электронов), и они могут составлять значительную часть всей Вселенной, а значит и определять ее судьбу. Масса Вселенной в таком случае оказывается так велика, что современное ее расширение через много миллиардов лет сменится сжатием и она стянется в точку. Открытие массы нейтрино очень важно для современной теории частиц, называемой Стандартной моделью. Она содержит свод правил, по которым частицы взаимодействуют друг с другом, а также схемы их устройства. По этой теории у нейтрино массы быть не должно, но в последние годы возникли определенные трудности в объяснении некоторых явлений и вновь найденная масса позволит расширить рамки нынешней модели. «Эта удивительная находка может стать ключом к поискам Святого Грааля физики — Единой Теории Всего, — подчеркнул на конференции физик из университета на Гавайях Джон Лернд. — Раз в жизни доводится участвовать в получении столь великих результатов». Нейтрино не участвует в сильных взаимодействиях, склеивающих протоны и нейтроны в ядра. А поскольку у него нет заряда, оно безразлично к электромагнитным силам. нейтрино взаимодействует с веществом крайне слабо: триллионы их пронизывают наше тело за минуту, не оставляя никакого следа. редко одна частичка из огромного потока наталкивается на ядро атома — вот этот след и видят Самого же нейтрино, конечно, никто и никогда непосредственно не фиксировал. Всю историю «существования» нейтрино его сопровождают удивительные загадки. Исследователи уже давно пришли к выводу, что есть три разновидности нейтрино — электронное, мюонное и — каждое названо в честь частицы, вместе с которой оно рождается. Почти четверть века экспериментаторы регистрируют поток нейтрино от Солнца, но получается он у них гораздо меньше, чем предсказывает теория. Эта нехватка стабильно наблюдается на различных установках. Возможным объяснением такого дефицита могла стать осцилляция — превращение одного сорта нейтрино в другое по пути от Солнца к Земле. Но это возможно только в том случае, если у нейтрино есть масса — тогда подобные превращения осуществимы и проблема нехватки устраняется.
Эксперимент, о котором идет речь, дает (если учесть данные других экспериментов) превосходную верхнюю оценку не только на массу электронного, но и на массу других типов нейтрино: мюонного и А это имеет фундаментальное значение как для физики элементарных частиц, так и для космологии. Дело в том, что в экспериментах по детектированию солнечных нейтрино были получены недавно убедительные данные, указывающие на то, что электронное нейтрино может осциллировать, переходя в другие два типа нейтрино.
Гипотеза о возможности нейтринных осцилляции была высказана Б. М. Понтекорво еще в 1957 г. С тех пор поиски нейтринных осцилляции велись в многочисленных экспериментах на реакторах, ускорителях высокой энергии и на мезонных фабриках. Поскольку, однако, расстояние, на котором происходит осцилляция, обратно пропорционально разности квадратов масс нейтрино, обнаружить осцилляцию при этом можно только в экспериментах на достаточно большой базе. В осуществлявшихся до сих пор лабораторных экспериментах расстояние между источниками нейтрино и детекторами оказалось недостаточным для заметного проявления осцилляции. Поэтому они и не были обнаружены. Вместе с тем регистрация солнечных и атмосферных нейтрино происходит на очень большой базе, что и обусловливает возможность обнаружения осцилляции в этих опытах.
Гипотеза о том, что происходит осцилляция солнечных (электронных) нейтрино, высказана около 40 лет назад, когда в первых экспериментах по детектированию солнечных нейтрино методом было обнаружено, что поток электронных нейтрино меньше расчетного. Поскольку в эксперименте регистрировались только нейтрино достаточно высокой энергии, составляющие незначительную часть общего потока нейтрино, наблюдаемый дефицит солнечных нейтрино этих энергий можно было отнести и за счет неточности принятой «стандартной» модели Солнца. Однако эксперименты по детектированию основного потока солнечных нейтрино методом (предложен В. А. Кузьминым), проведенные в Баксанской нейтринной обсерватории под руководством Г. Т. Зацепина и в подземной лаборатории в Италии, доказали, что дефицит в потоке солнечных нейтрино не может быть объяснен моделью Солнца.
Доказательством осцилляции солнечных нейтрино явились совместные данные японской установки Суперкамиоканда и запущенной более года назад канадской установки SNO, содержащей 1000 т тяжелой воды D2O. Дело в том, что мюонные и (в которые частично переходят электронные нейтрино), будучи неспособными вызвать реакции превращения и могут, согласно Стандартной модели элементарных частиц, рассеиваться на электронах, передавая им часть своей энергии, а также вызывать расщепление дейтерия на протон и нейтрон. Число наблюдаемых в указанных установках электронов отдачи по сравнению с числом реакций, вызываемых одними только электронными нейтрино, полностью согласуется (в пределах статистических ошибок) с гипотезой осцилляции нейтрино и стандартной моделью Солнца.
Из факта существования осцилляции нейтрино следуют, по крайней мере, два важных вывода. как было показано В. Н. Грибовым и Б. М. Понтекорво, нейтрино должны иметь ненулевую массу покоя. Это указывает на необходимость дальнейших экспериментов в попытке обнаружить массу электронного нейтрино (или установить более низкий предел на ее величину). поскольку из экспериментов по поискам осцилляции следует, что масса мюонного не может существенно превышать предел, установленный для массы электронного нейтрино. А это означает, что мюонное не могут быть носителями наблюдаемой темной массы Вселенной: из космологических оценок следует, что для этого масса «тяжелого» нейтрино должна быть порядка 20 эВ.
Вопрос, почему массы нейтрино столь малы по сравнению с массами соответствующих им лептонов, — фундаментальный в современной физике. Для его решения предложены модели, связывающие наблюдаемые «левые» нейтрино с гипотетическими сверхтяжелыми частицами. Возможно, что взаимодействия, приводящие к осцилляции нейтрино, то есть нарушающие сохранение сублептонного числа (или, иначе, типа нейтрино) приводят также к нарушению барионного числа и комбинированной обусловливающих барионную асимметрию Вселенной. Таким образом, изучение нейтринных осцилляций и определение массы нейтрино выводят нас в новую область физических явлений за пределами Стандартной модели.
В связи с этим можно напомнить, что проблема нейтрино сыграла фундаментальную роль в создании современной физики частиц. Именно для объяснения испускания нейтрино Э. Ферми предложил в 1933 г. новый тип взаимодействия (отличающийся от известных в то время электромагнитных и гравитационных). Попытка объяснить с помощью этого взаимодействия ядерные силы (И. Е. Тамм и Д. Д. Иваненко) привела к пониманию различия между «слабыми» взаимодействиями Ферми и ядерными силами, то есть способствовала открытию сильных взаимодействий (X. Юкава). Теоретическая возможность существования спирального (левого) нейрино, предложенная Л. Д. Ландау, А. Саламом, Т. Д. Ли и Ц. Н. Янгом после открытия несохранения пространственной четности, привела в результате ее обобщения к открытию закона универсального слабого взаимодействия. Это, в свою очередь, стимулировало развитие так называемых калибровочных теорий, на основе которых удалось открыть единство электромагнитных и слабых взаимодействий, а также создать современную теорию сильных взаимодействий — квантовую хромодинамику.
Возможно, что именно изучение проблем нейтрино, его массы и осцилляции даст ключ к «новой» физике за пределами Стандартной модели. Важным шагом в этом направлении являются результаты нового эксперимента.
Описание эксперимента В. Лобашева. Известные элементарные частицы, испытывающие только электрослабое и, конечно, гравитационное взаимодействие, — лептоны — образуют дублеты, которые объединяют заряженный лептон и нейтральную частицу — нейтрино:
Зараженный лептон Нейтрино
Частицы, входящие в дублет, являются носителями квантового числа, условно именуемого flavor, или аромат.
Существование трех ароматов — электронного, мюонного и называемых по имени заряженного партнера в каждом дублете, — экспериментально установленный факт, который не объясняется так называемой Стандартной моделью. Что касается нейтрино, то при их свободном распространении наблюдались переходы из одного аромата в другие (осцилляции). Идею осцилляций нейтрино — антинейтрино высказал Б. М. Понтекорво в 1957 г., позднее была допущена возможность осцилляции между нейтрино с различными ароматами.
Мы хорошо знаем массу заряженных частиц. Она достаточно велика и изменяется от 0,5 (электрон) до 1777 МэВ. Нейтрино в этом отношении представляет исключение. Его масса, как вначале следовало из экспериментальных данных, а теперь — из теории, очень мала, в 10 9 раз меньше массы наиболее тяжелого заряженного партнера. Казалось бы, столь малые эффекты не должны особенно интересовать физиков, если бы масса нейтрино не была фундаментальной величиной.
Согласно гипотезе Большого взрыва, нейтрино, наряду с реликтовыми фотонами, — самые распространенные частицы во Вселенной. Но если фон реликтовых фотонов исследован с большой точностью, то реликтовые нейтрино все еще остаются «terra incognita». Плотность нейтрино связана с плотностью реликтовых фотонов, поэтому во Вселенной в среднем должно быть около сотни нейтрино каждого сорта в одном кубическом сантиметре. Таким образом, число нейтрино во Вселенной, по крайней мере, в 10 9 раз превышает число адронов, то есть нуклонов, образующих материю — видимую Вселенную.
Поиск массы нейтрино ведет начало с гипотезы В. Паули о существовании частицы с очень слабым взаимодействием. И первая оценка ее массы была сделана еще в годах, когда обнаружили тяжелый изотоп водорода — тритий с периодом полураспада 12 лет и малой энергией распада. Существование этого хорошо разрешенного перехода указывало на то, что масса нейтрино должна быть меньше 10 кэВ, то есть на два порядка меньше массы электрона. Дальнейшее уточнение массы нейтрино проводилось посредством измерения формы трития. Одну из первых работ выполнили в 1949 г. Б. М. Понтекорво и Г. Ханна с помощью пропорционального счетчика, наполненного тритированным метаном. Они получили верхнюю границу для массы нейтрино в 1 кэВ, что в 500 раз меньше массы электрона. Эта оценка послужила неким указанием на то, что масса нейтрино вообще равна нулю.
Согласно теории двухкомпонентного нейтрино, появившейся в 1958 г., она должна была быть тождественно равна нулю.
Отсутствие теоретической мотивации в тот момент не очень стимулировало дальнейшие поиски массы нейтрино. Тем не менее за 20 лет — с 1950 по 1970 г. — были проведены эксперименты, в которых масса нейтрино оценивалась на уровне 250–50 эВ. Особенно следует отметить работу Берквиста (Швеция), получившего ограничение на массу нейтрино в 50 эВ. В это же время теория универсального слабого взаимодействия дала однозначную интерпретацию формы распада радиоактивных ядер, в том числе и трития.
Почему, собственно говоря, был выбран именно тритий для измерения массы нейтрино?
В смысле тритий — аналог дрозофилы в генетических исследованиях, потому что он обладает уникальными свойствами: малой энергией перехода, простотой получения тритированных соединений, большой надежностью при вычислении атомарных и даже молекулярных эффектов. В этом смысле у трития нет конкурентов.
В годах гипотеза Понтекорво об осцилляциях нейтрино позволила объяснить дефицит солнечных нейтрино в опытах Р. Дэвиса. Данные, полученные Дэвисом, свидетельствовали о чрезвычайно малой массе нейтрино. Измерения трития стали не очень популярными, хотя экспериментаторы настойчиво продолжали улучшать свои установки.
После 1972 г. появление гипотезы объединения всех взаимодействий потребовало, чтобы нейтрино, как всякий фермион, имело хоть массу. Экспериментаторы начали поиски осцилляции нейтрино, то есть переходов между различными сортами нейтрино — электронным, мюонным и Десятки теоретиков занялись интерпретацией результатов этих экспериментов, но делали при этом весьма разнообразные выводы.
Сегодня можно утверждать, основываясь на данных нескольких самых точных экспериментов, что осцилляции нейтрино есть. Это означает, что у него есть масса. Однако период осцилляции, который зависит от разности квадратов масс нейтрино разных ароматов, оказался очень большим, что соответствует очень малой разности квадратов масс. В то же время, глубина осцилляции, которая дает так называемый фактор смешивания различных сортов нейтрино, близок к 100%. Раз они хорошо смешиваются, то, учитывая, что разность квадратов масс мала, можно сделать такой вывод: нейтрино разных ароматов почти идентичны. Таким образом, основная часть массы нейтрино, общая для разных ароматов, остается неизвестной. С одной стороны, вроде бы масса есть, а с другой стороны, самые точные эксперименты (поиск осцилляции) обнаружить эту массу не могут, поскольку измеряют только разность квадратов масс.
Сегодняшнее значение для разности квадратов масс нейтрино — менее 10 −3 эВ² при факторе смешивания порядка 100%. Нейтрино разных ароматов как бы вырождены по массе, что делает задачу ее определения чрезвычайно трудной, но и более однозначной, поскольку, изучая свойства одного типа нейтрино, мы получаем сведения и о других типах. Сейчас мы знаем тонкие отличия между нейтрино, но не знаем главного: какова сама масса нейтрино.
Альтернативные подходы к поиску массы нейтрино, например, двойной безнейтринный распад, тоже не могут дать абсолютной величины массы. Поэтому вновь усилился интерес к изучению трития и получению массы нейтрино прямым кинематическим методом.
При радиоактивного ядра энергия распада делится между новым ядром, электроном и нейтрино. Поскольку ядро значительно тяжелее, основная энергия распада распределяется между электроном и нейтрино в соответствии с законом сохранения момента движения и полной энергии распада. По мере приближения к границе (максимальной энергии электронов) энергия нейтрино должна уменьшаться вплоть до точки, где эта частица имеет нулевую кинетическую энергию (в нерелятивистском приближении) и ненулевую массу (если она есть). Важно при этом, что тритий в этом отношении — совершенно уникальный объект, его распад — своеобразная лаборатория низкоэнергетических нейтрино.
Единственным конкурирующим элементом может быть но при его возникает ряд обстоятельств, не позволяющих использовать такое преимущество, как меньшая, чем у трития, граничная энергия.
Измерение формы выполняется на самых его концах, соответствующих минимальной энергии нейтрино. Можно наглядно представить трития, если при изображении выделить зону — фрагмент спектра вблизи верхней границы энергии, содержащий информацию о массе нейтрино.
Если она не равна нулю, то здесь обрывается, не доходя на величину массы до максимальной энергии. Последняя может быть определена из формы остальной части
Относительная часть которая дает эффект массы, очень мала. Например, чтобы измерить массу 10 эВ, надо обнаружить дефицит интенсивности электронов в конце спектра на уровне 2,9 · 10 −10 полной интенсивности массу 1 эВ — уже 10 −13 . Задача определения массы нейтрино в смысле эквивалентна поиску редких распадов, но с выделением искомого эффекта только по форме спектра. На то, чтобы выделить конец в наиболее чистом виде, спектроскописты затратили более 50 лет.
Зависимость тритиевого спектра вблизи граничной точки от массы нейтрино выражается множителем, который представляет собой фазовый объем, занимаемый нейтрино в импульсном пространстве, тогда как полная энергия уходит к электрону. Чем меньше энергия нейтрино, тем чувствительнее форма конца спектра к возможной массе. Следует также отметить, что при анализе формы измеряемой вели чиной является квадрат массы нейтрино. Это означает, что, сравнивая разные эксперименты и оценивая возможную чувствительность, мы должны сравнивать именно квадрат массы.
В 1980 г. случился, как можно сказать, «обвал» в физике нейтрино. Исследователи из Института теоретической и экспериментальной физики, проведя измерения на созданной ими уникальной для того времени установке, заявили, что форма трития соответствует наличию массы нейтрино около 30 эВ (квадрат массы 900 ± 150 эВ²). Эти результаты тщательно анализировались, но до получения первых результатов новых экспериментов не было уверенности, что в нем содержится ошибка. было выдвинуто около 20 предложений новых экспериментов, из которых до конца были доведены только три. Они исключили эффект массы нейтрино на уровне квадрата массы И только после экспериментов Цюрихской группы, группы Токийского университета и национальной лаборатории эффект ненулевой массы был опровергнут.
Можно примерно представить на схеме результаты поиска массы нейтрино с 1990 по 2002 г. В уже упомянутых первых трех экспериментах в Цюрихе, Токио и ошибка квадрата массы составляла тогда как начиная с 1994 г. ошибки были уменьшены до Последние по времени результаты, полученные в Троицке и в Майнце, соответствуют дефициту интенсивности в спектре почти 10 4 раз меньшему, чем в эксперименте Института теоретической и экспериментальной физики.
Значительно улучшилось энергетическое разрешение спектрометров. Огромный рост точности экспериментов — следствие работы, которая выполнена в Институте ядерных исследований в Троицке и параллельно (по утверждению авторов эксперимента) независимо в Университете Майнца. Этого удалось достичь благодаря применению нового типа и источника трития, которые позволили войти в область точностей квадрата массы нейтрино порядка
В 1982 г. возникла идея использовать бутылкообразную магнитную ловушку, поместив источник трития с одной ее стороны (в пробке) в область максимального поля, а детектор электронов — с другой. Электроны, перемещающиеся в неоднородном, плавно меняющемся магнитном поле, находятся в состоянии так называемого адиабатического движения. При этом энергия поперечного движения, обусловленная ларморовской циркуляцией электрона вокруг магнитной силовой линии, становится почти равной нулю вблизи минимума магнитного поля. Точнее, она равна энергии электрона, умноженной на отношение магнитных полей в центре магнитной бутылки к максимальному значению поля в пробке. В этом случае взаимодействие с электрическим полем, производимым в центре бутылки цилиндрическим электродом, на который подается отрицательный потенциал, позволяет отсечь от детектора электроны, имеющие энергию ниже потенциала этого электрода с точностью нескольких электронвольт. если отношение магнитных полей в центре бутылки и в пробке достаточно велико. Электроны с энергией больше потенциала цилиндрического электрода ускоряются и регистрируются детектором — полупроводниковым кремниевым счетчиком.
Благодаря тому, что конфигурация магнитного поля обеспечивает везде адиабатическое движение, детектор «видит» только те электроны, которые родились на магнитных силовых линиях, пересекающих его поверхность. Если трубка потока, образуемого этими силовыми линиями, нигде не касается стенок прибора, то электроны, рожденные на стенках, не могут попасть в детектор. Именно это позволило в электростатическом интегральном спектрометре избавиться от фона, связанного с ионной бомбардировкой стенок, неизбежной в чисто электростатическом варианте. П. Н. Спивак потратил семь лет на то, чтобы получить низкофоновые условия в электростатическом спектрометре и в конце концов отказался от этого.
Проанализировав его опыт, можно в дальнейшем прийти к заключению, что магнитное поле обеспечит как низкий фон, так и хорошее разрешение.
Установка нового типа была создана в Троицке и получила название — «Троицк В ней используется электростатический спектрометр интегрального типа. Сверхпроводящие соленоиды создают продольное магнитное поле. Отношение напряженности в минимуме и в максимуме поля определяет разрешение спектрометра. В нашем случае разрешение составляет 3,5 эВ. К тому же форма простая и хорошо интегрируемая. В принципе, на подобной установке можно получить разрешение 1 эВ. Сама установка по масштабам физики высоких энергий небольшая, но ряд проблем, связанных с ее созданием, бросает вызов искусству экспериментатора.
Для того чтобы исследовать спектр с точностью несколько электронвольт, необходимо иметь источник, в котором отсутствуют окна. Наличие сильного магнитного поля на входе в спектрометр, позволяющего транспортировать электроны адиабатически на значительное расстояние, решает эту проблему. Источник представляет собой трубу диаметром 3 м. в середину которой инжектируется газообразный тритий. Труба находится в сильном продольном магнитном поле, и электроны транспортируются по ломаной узкой трубке диаметром всего 20 мм вплоть до спектрометра, где анализируются интегральным методом.
Чтобы избежать попадания трития в спектрометр (это было бы полной катастрофой), используется принцип последовательной дифференциальной откачки. После каждого ломаного участка узкой трубки имеется зазор, через который диффузионный насос откачивает тритий, причем выход каждого насоса подсоединен на вход предыдущего. Таким образом, даже при трех дифференциальных ступенях откачки удается получить фактор уменьшения давления трития порядка 10 7 .
Дальше с помощью крионасоса, представляющего собой аргон, намороженный на холодную поверхность криостата, давление трития снижается еще на шесть порядков. Весь этот откачиваемый тритий проходит гетерные блоки очистки (эти блоки созданы сотрудниками ВНИИ неорганических материалов им. А. А. Бочвара). Далее очищенный тритий снова инжектируется в трубу, то есть идет непрерывная циркуляция.
Хочу отметить, что в спектрометре парциальное давление трития меньше, чем в галактическом пространстве. Благодаря последовательной схеме дифференциальной откачки удается получить парциальное давление трития порядка 10 18 Торр. Достичь такого давления трития совершенно невозможно параллельной откачкой.
Стоит обратить внимание, что сверхпроводящая часть установки изготовлена в институте, где работает В. Лобашев, и успех этого дела в значительной степени связан с развитием в нашей стране технологии получения сверхпроводящего провода. Его качество превосходит то, что делается ныне за рубежом. Особенно важно, что для работы удалось получить гелиевый рефрижератор фирмы «Зульцер» с турбодетандерами на газовой подушке. Эта машина надежно работает на протяжении уже 15 лет.
Другой вариант спектрометра разработан за рубежом в Университете города Майнц. Его создание началось в 1986 г., тогда как нашего — в 1982 г.
Спектрометр в Майнце меньше нашего в два раза, в результате чего возникла масса проблем как с фоном, так и с источником, в качестве которого использовался намороженный тритий. Оказалось, что намороженный тритий способен заряжаться и искажать функцию разрешения спектрометра. К тому же испарение трития порождает фон в спектрометре. Был сделан дополнительный магнитный тракт для установки в Майнце, который позволил удалить источник от спектрометра и тем самым устранить в значительной степени фон. Так невольно в ходе разработок в нашей стране мы вырастили себе конкурента, но можно считать необходимым сотрудничество ученых.
Преимущества нового подхода заключаются в увеличении разрешающей способности и светосилы установки. В начале, сравнили аппаратурные функции энергетического разрешения, полученные на установке «Троицк и в эксперименте 1980 г. Института теоретической и экспериментальной физики. Если в последнем разрешение составляет около 20 эВ (ширина на полувысоте), причем функция разрешения имеет длинные хвосты, связанные с рассеянием электронов в спектрометре, то в нашем случае функция разрешения — это линейная ступенька шириной 3,5 эВ, которая задается отношением магнитных полей на входе и в середине спектрометра.
Светимость определяется как регистрируемая в спектрометре часть телесного угла вылета электронов при распаде, умноженная на площадь источника. В установке «Троицк эта величина на порядка больше, чем в предыдущих экспериментах. Именно этим, а также возможностью энергетического анализа, который исключает высокоэнергетичные хвосты функции разрешения, обусловлен скачок в чувствительности установки к массе нейтрино. Газовый безоконный источник также имеет преимущество как перед намороженным, так и перед источником на базе тритированной органики, поскольку позволяет точно учесть поправки к спектру.
Заметим: при анализе спектра необходимо учитывать, что распад в молекулярном тритии идет в дочернюю молекулу. У этой молекулы около 200 возбужденных состояний, и переходы на них идут с меньшей энергией, искажая К сожалению, найти способ экспериментального измерения возбужденных состояний дочерней молекулы трития сегодня не представляется возможным, так что приходится довольствоваться теоретическими расчетами. Однако для свободной молекулы в газовом источнике теория дает достаточно точную поправку.
В настоящее время группа В. Лобашева располагает результатами измерений квадрата массы нейтрино в разных сеансах на протяжении восьми лет. Однако чистое время измерений составляет примерно год, что связано как с техническими, гак и финансовыми трудностями. При анализе измерений формы оказалось, что значительная его часть описывается теоретическим спектром с массой нейтрино, равной нулю, кроме самого конца спектра. Здесь наблюдается некая структура в виде избыточной интенсивности, сдвинутая относительно граничной точки на в сторону низких энергий. На графике разница между теоретическим и экспериментальным спектрами, полученная вычитанием одного из другого, напоминает ступеньку. Поскольку спектрометр интегральный, то для того чтобы сравнить его данные с данными дифференциального спектрометра, надо продифференцировать эту ступеньку, и тогда получается, что на этом месте спектра находится бамп. Он имеет ширину, близкую к разрешению спектрометра, и его наличие может означать, что в непрерывном появляется некая монохроматическая линия. Она может возникнуть только в результате двухчастичного процесса, а в трития, где фигурируют три частицы, ее появление исключено. На первых порах, чтобы избавиться от этой странности, пришлось вводить дополнительные параметры, которые как бы вырезали кусок спектра с бампом. Существенно также, что при обработке экспериментального спектра без учета бампа величина квадрата массы нейтрино получается отрицательной, равной 10–15 эВ. Учет же бампа с помощью двух свободных параметров полностью исключает эффект отрицательной величины квадрата массы нейтрино.
Судя по нашим измерениям, начатым в 1994 г. (см. таблицу), величина квадрата массы нейтрино находится около нуля. В сумме получен предел на массу нейтрино, равный 2,2 эВ при достоверности. На сегодняшний день, это — самая точная оценка массы прямым кинематическим способом. Она оказалась ниже пределов на массу нейтрино, даваемых другими методами, например, при анализе распределения реликтового фотонного излучения. Если полученная масса нейтрино верна, то существенно снизится возможный вклад любого вида (аромата) нейтрино в темную материю Вселенной.
Результаты измерения квадрата массы нейтрино
Год: Квадрат массы, эВ 2 /с 4
1994: −2,7 ± 10,1 (фит)* ± 4,9 (сист)
1996: +0,5 ±7,1 (фит) ± 2,5 (сист)
1997: 1) −8,6 ± 7,6 (фит) ± 2,5 (сист); 2) −3,2 ± 4,8 (фит) ± 1,5 (сист)
1998: −0,6181 (фит) ± 2,0 (сист)
1999: +1,6 ± 5,6 (фит) ± 2,0 (сист)
2001: 1) −5,5 ± 6,5 (фит) ± 2,0 (сист); 2) −5,2 ± 6,7 (фит) ± 1,5 (сист)
с 1994 по 2001: −2,3 ± 2,5 (фит) ± 2,0 (сист)
Аномальные структуры, которые наблюдаются в спектре, может быть, представляют самостоятельный интерес, если, конечно, будет доказан их глобальный характер. Другими словами, они должны наблюдаться не на одной, а по крайней мере на двух установках.
Было прослежено положение ступеньки — разницы между теоретическим и экспериментальным спектрами трития — относительно конца спектра в зависимости от сезонного времени измерений. Оказалось, что в большей части измерений положение этих ступенек хорошо соответствует синусоиде с периодом полгода. Такое явление для слабого взаимодействия кажется чрезвычайно странным. Дальнейшие измерения показали, что к полугодовому периоду примешивается годичный. Лишь две точки за все время проведения эксперимента не ложатся на эту кривую, причем оба измерения были выполнены в канун нового года. Удивительно, но три года подряд фиксируются некие аномалии именно в две последние недели декабря. Связан ли этот эффект с движением Земли вокруг Солнца или с аппаратурой, предстоит выяснить.
Можно отметить, что в последних измерениях, проведенных в Университете Майнца, эффект ступеньки не обнаружен. Это может быть вызвано изменением некоторых параметров при обработке спектра, а также худшим энергетическим разрешением установки самозарядки источника. Если эффект ступеньки будет в дальнейшем подтвержден, то в качестве экзотического объяснения можно рассмотреть возникновение монохроматической линии в спектре в результате двухчастичного процесса.
Таким двухчастичным процессом мог бы быть захват нейтрино тритием с испусканием монохроматического электрона. Этот процесс является обратным по отношению к и его сечение хорошо вычисляется. Если такой процесс происходит, то мы должны наблюдать в конце трития монохроматическую линию с энергией перехода примерно 18,6 кэВ. Казалось бы, предложенная гипотеза, хотя и крайне спекулятивная, способна в принципе объяснить то, что мы видим в спектре. Однако, чтобы получить этот маленький пичок, интенсивность которого составляет 10 −10 полной интенсивности нужно иметь плотность нейтрино 10 15 в 1 см³. Нейтрино должны быть вырожденными, а их облако ограничено по размерам так, чтобы движение Земли в его пределах создавало модуляции эффекта переменной плотности.
В принципе такое можно допустить, потому что если нейтрино сгруппированы в сгустки, тогда нет проблем с их средней космологической плотностью. Разумеется, чтобы удержать эти сгустки, необходимо специальное взаимодействие для нейтрино. Напомним, что еще Б. М. Понтекорво ставил вопрос о возможности существования сильного взаимодействия. Разумеется, такие объяснения сегодня могут рассматриваться как очень экстравагантная гипотеза.
Несколько слов о перспективах. Потенциал новой установки использован всего лишь на 20%. Увеличение эффективности с 20% хотя бы до 50% требует определенных финансовых вложений. Существует также другой проект — проект КАТРИН, который разрабатывается, к сожалению, не у нас, а в Германии, в исследовательском центре Карлсруэ. Это увеличенная копия маленькой установки «Троицк Новая установка включает спектрометр с сосудом диаметром 7 м. В результате разрешение можно увеличить до 1 эВ (у нас — 3,5 эВ), а светимость, по сравнению с установкой «Троицк почти Источник тритиевых электронов, конечно, будет представлять собой гораздо большее сооружение, чем то, что было у нас, однако его создание по силам современной технологии. В таком спектрометре парциальное давление трития должно составлять 10 20 Торр, что на два порядка меньше, чем галактический вакуум. С помощью последовательной дифференциальной откачки эти условия в принципе могут быть достигнуты.
Арбузов Б. А. Открытие самой тяжелой частицы // Соросовский образовательный журнал. 1996. № 9
Герштейн С. С. Загадки солнечных нейтрино // Соросовский образовательный журнал. 1997. № 8
Козик В. С., Любимов В. А., Новиков В. Е. и др. Об оценке массы ν е по спектру трития в валине // Ядерная физика. 1980. Т.32. № 1
Лобашев В. М., Спивак П. К. К вопросу об измерении массы покоя антинейтрино // Препринт ИЯИ АН СССР. М., 1983
Лобашев В. М. Измерения массы нейтрино в трития // Вестник Российской академии наук. 2003. Т. 73. № 1
Михеев С. П., Смирнов А. Ю. Резонансные осцилляции нейтрино в веществе // Успехи физических наук. 1987. Т.153. № 1
Окунь Л. Б. Лептоны и кварки. М., 1982
Окунь Л. Б. Физика элементарных частиц. М., 1988
Belesev A. I., Bleule A. I., Geraskin E. V. et al. Results of the Troitsk experiment on the search for electron antineutrino rest mass in tritium // Phys. Lett. 1995. B.350
Bergkvist R. E. A study of the behaviour of the tritium // Nucl. Phys. 1972. B.39
Lobashev V.M., Aseev V.N., Belesev A. I. et al. Direct search for mass of neutrino and anomaly in the // Phys. Lett. 1999. B.460
Weinheimer Ch., Degen A. et al. High precision measurement of the tritium near its and upper limit on the neutrino mass // Phys. Lett. 1999. B.460
Источник