Почему в космосе холодно, если Солнце горячее?
Хоть Солнце и удалено на 150 миллионов км от нашей планеты, это не мешает ему дарить нам свое тепло ежедневно. Если даже на Земле температура доходит до +50°C и даже +60, зарегистрированных буквально в прошлом году в Кувейте, то что же происходит на более близком расстоянии к звезде? Но более интересно то, почему в космосе все равно холодно, если Солнце такое горячее? Об этом мы сегодня и поговорим.
Что такое тепло и температура
Для начала немного окунемся в матчасть, чтобы понять «откуда ноги растут». Первое, что нам нужно уяснить, это разница между словами «тепло» и «температура». Очень часто они используются как синонимы, но это не совсем правильно. Говоря простыми словами, тепло – это энергия. Она хранится как внутри Солнца, так и в нас с вами. А температура – измерение той самой энергии, способ вычислить, насколько теплый/холодный какой-нибудь объект или среда. Когда тепло покидает тело, его температура понижается.
«Выход» тепла из одного объекта и его переход в другой может осуществляться тремя способами: проводимостью, конвекцией и излучением. Проводимость характерна для твердых объектов. При нагревании более горячие частицы сталкиваются с более холодными и таким образом передают им тепло. Конвекция относится к газам и жидкостям. Вы наверняка знаете, что тепло не опускается, а поднимается. Именно поэтому в комнате под потолком всегда температура чуть выше, чем внизу. То же самое касается и поверхности воды, где заметно теплее, чем на дне. Это происходит благодаря конвекции. Молекулы жидкости или газа нагреваются и устремляются вверх. Там они вытесняют холодные молекулы, которые в свою очередь опускаются вниз.
Что такое тепло и температура
При излучении объект передает свое тепло в виде света. Возможно, для кого-то это станет открытием, но излучение характерно вообще для всего вокруг нас и для нас самих тоже. Люди также излучают тепло в форме инфракрасных волн. Увидеть это невооруженным глазом, конечно же, нельзя, но вот на тепловизоре – легко. Так работают различные приборы ночного видения и прочие инфракрасные камеры. Чем наблюдаемое тело горячее, тем больше тепла излучает и ярче светится на тепловизоре. Самым ярким примером (простите за каламбур) теплового излучения является наша звезда, которая отдает свое тепло всем планетам, вращающимся вокруг нее. Кому-то больше, кому-то меньше, но светит Солнце всем.
Если вы уловили все выше сказанное, то знайте, что мы уже близки к ответу на вопрос: «Почему в космосе холодно, если Солнце горячее?». Итак, для проводимости и конвекции необходимо определенное количество частиц, которые будут передавать тепло между собой, например, частицы воздуха в земной атмосфере. Но проблема космоса заключается в том, что там таких частиц крайне мало (и воздуха там нет, там вообще ничего нет, кроме вакуума), поэтому там эти два способа теплопередачи неэффективны от слова совсем.
Что же тогда остается? Правильно, излучение. Оно движется от Солнца и попадает на какой-либо объект, который начинает его поглощать. На Земле в этом случае сработала бы проводимость или конвекция, так как здесь есть достаточное для этого количество частиц материи, в нашем случае – воздуха. Но в космосе это не сработает, потому что в вакууме не хватает той самой материи, которая могла бы поглотить солнечное тепло и передать его другим объектам. Поэтому в космосе и холодно.
Почему в космосе холодно
Почему в тени так холодно
Как вам известно, в тени всегда прохладнее. Особенно сильно это заметно ночью, когда даже в летний период может быть достаточно холодно. Теперь вы знаете, что это объясняется отсутствием солнечного излучения в этой части планеты. Это полушарие просто повернуто в другую сторону – одно из доказательств того, что Земля круглая. Но сейчас не об этом.
Если в пределах нашей планеты во тьме температура падает на несколько градусов, то в космосе эта разница просто колоссальна. Вспомните тот же Меркурий, который невероятно горячий с одной стороны и дико холодный с другой. Но давайте для более наглядного примера возьмем что-нибудь поближе, например, Луну. Сторона нашего спутника, повернутая к Солнцу, нагревается до +127 градусов по Цельсию. В это время обратная сторона мерзнет при -173. Почему же такой же эффект не наблюдается на Земле? Все из-за атмосферы. Именно она равномерно распределяет солнечное излучение, обеспечивая нам постепенное снижение и увеличение температуры, а не резкое. Если бы Земля не вращалась вокруг своей оси, температура на темном полушарии постепенно продолжила бы падать, а на светлом – повышаться.
Еще один известный пример – солнечный зонд Parker, который был отправлен изучать наше светило. Он использовал теплозащитный экран, чтобы не сгореть от солнечного излучения. И температура этого экрана повышалась до 120 градусов, а вот сам зонд, который за ним прятался, промерзал до -150.
Источник
Если Солнце горячее, то почему в космосе холодно?
Все объекты Солнечной системы получают тепло и свет от единого источника – Солнца. Это гигантская раскаленная сфера, благодаря которой на Земле смогла возникнуть и развиться жизнь. Но если Солнце настолько горячее, то почему в космическом пространстве холодно?
Давайте сравним температурные показатели. Что значит раскаленность Солнца в цифрах? Ну, если вы окажитесь в ядре, то температура поднимется до 14 млн. К! Поверхность кажется более прохладной, но это все равно огромная цифра в 6000 К.
А вот космическое пространство достигает по нагреву 0 К или -273.15°C (без учета реликтового излучения). Почему так происходит? Почему космос не прогревается?
Тепло распространяется через космос в виде излучения. Это инфракрасная волна энергии, перемещающаяся от более раскаленных объектов к холодным. Волны излучения пробуждают молекулы, с которыми контактируют, заставляя их нагреваться.
Космическое пространство достигает по нагреву 0 К или -273.15°C
Именно по такой схеме тепло распространяется от звезды к Земле. Но есть один момент: излучение нагревает лишь молекулы и вещества, расположенные на пути, а все остальное остается холодным.
На Земле воздух остается теплым даже в тени и в ночное время, потому что тепло распространяется тремя способами: проводимость, конвекция и излучение. Когда звездные лучи накаляют молекулы в земной атмосфере, то те передают дополнительную энергию остальным молекулам. Возникает цепная реакция, которая нагревает те области, что остались за пределами солнечного луча.
Но космическое пространство представляет собою вакуум (почти пустое). Молекулы газа слишком маленькие и отдалены на большие дистанции, чтобы постоянно сталкиваться и обмениваться теплом. Так что даже при солнечном нагреве проводимость не срабатывает. То же самое касается и конвекции, которая работает при силе тяжести и неэффективна в невесомости.
Космический зонд Паркер отправился изучать солнечную атмосферу
Об этой особенности приходится задумываться инженерам, проектирующим космические корабли, которые совершают дальние космические путешествия или приближаются к Солнцу. Интересным примером кажется зонд Паркер, который отправили изучать солнечную атмосферу.
То есть, этот космический корабль постепенно приближается к самому аду Солнечной системы, но он все еще цел! Все дело в защитном тепловом экране, который гарантирует, чтобы солнечные лучи не попали на поверхность зонда. И выходит, что ему приходится с одной стороны выдерживать невероятный нагрев и параллельно с этим находиться в холодном космическом пространстве.
Приходится придумывать различные системы, которые позволяют кораблю оставаться достаточно холодным и избегать короткого замыкания, но при этом не перегреваться и не плавиться от солнечного нагрева.
Источник
Почему в космосе холодно и почему, с точки зрения физиков, это место уникальное?
Если бы у людей была возможность путешествовать в космосе, от планеты к планете, то насколько тщательно необходимо было бы все продумывать. Вплоть до еды, температуры и личной гигиены. Голливуд изобилует фильмами, посвященные космической теме, в которых люди в открытом космосе окончательно теряли шансы на жизнь. Каждый видел картину, когда окоченевший скафандр уносится вдоль орбиты. Почему в космосе холодно? Ведь на орбите земли находится множество космонавтов, которые выходили в открытый космос, и они оставались целыми и невредимыми.
Холодно ли в космосе?
Допустим, что мы находимся максимально далеко от небесных светил, которые своей энергией и температурой способны воздействовать на материальное тело. Также изолируемся от планет и их спутников, которые способны повлиять на температуру своим ядром. При соблюдении этих моментов температура будет равна -274 градусов по Цельсию. Эта температура называется абсолютным нулем, то есть ниже нее температура быть в природе не может. Почему в космосе холодно? — потому что это единственное место, где температура опускается до абсолютного нуля.
В повседневных реалиях температура не может иметь значения ниже нуля. Исключение составляет только самые отдаленные участки вселенной. На орбите земли, с учетом всех факторов, температура составляет примерно — 4 градуса по Цельсию.
Что происходит при абсолютном нуле
Абсолютный нуль — это нуль температуры по шкале Кельвина. При стандартных условиях такая температура невозможна. Самая холодная температура в космосе -274 (по Цельсию) или 0 (по Кельвину). Так почему же температура не способна перевалить за данную границу?
По третьему началу термодинамики, которую согласовал Нернст, при стремлении температуры к ее абсолютному нулю, к ней стремится энтропия системы (или тела), теплоемкость и коэффициент температурного расширения. Если значение температуры достигло абсолютного нуля, то останавливается процесс хаотичного движения атомов и молекул. С точки зрения термодинамики тело распадается на молекулы. А с точки зрения квантовой физики в теле продолжают происходить нулевые колебания. Именно эти суждения помогают ответить на вопрос: «Почему в космосе холодно?».
Физики из Йельского университета провели опыт на монофториде стронция (SrF). В магнитное поле поместили молекулу, которая постоянно теряла свою энергию и в конечном итоге, при максимально возможном приближении к абсолютному нулю молекула распалась на атомы.
Благодаря исследованиям близких к абсолютному нулю температур, был получен эффект сверхпроводимости, который широко используется в промышленности и науке.
Перенося ситуацию в космическое пространство, можно сказать что достижение абсолютного нуля затрудняется излучением со стороны звезд.
Виды теплопередачи
В школьном курсе физики рассматривается раздел термодинамики, в котором уделяют внимание на виды теплопередач. Этот раздел из физики поможет ответить на вопрос «почему в космосе холоднее, чем на земле».
Выделяют три вида теплопередачи в природе:
- Теплопроводность. Это переход энергии от более нагретого тела или участка тела к менее нагретому. Стоит отметить, что невозможен переход энергии от более холодному к менее холодному (по принципу второго начала термодинамики). Пример: нагревание металлического тела.
- Конвекция. Энергия передается потоками (струями). Пример: теплопередача в комнате между холодным и теплым воздухом.
- Излучение. Энергия передается с помощью электромагнитных волн. Пример: солнечное тепло.
Так как космос является вакуумом (плотность молекул в космосе пренебрежимо мало — 10^-31 г/см^3), следует полагать что единственный возможный вариант теплопередачи — излучение. Земля не является вакуумом, она имеет атмосферу (молекулы на поверхности планеты), которая позволяет производить сразу три вида теплопередачи.
Зависимость температуры от положения тела
Излучение в космосе исходит от нагретых тел, в нашей галактике — это Солнце. Солнце отправляет со своей поверхности электромагнитные волны, которые имеют прямую траекторию движения. Следовательно, тело получает энергию, если Солнце находится в зоне видимости.
Если на объект попадают электромагнитные волны, то тело поглощает тепловую энергию. Но обмен с окружающей средой осуществляться не будет, так как тело окружает вакуум, который практически не имеет молекул.
Если объект находится, например, за темной стороной планеты, куда электромагнитные волны не могут попасть, то тело действительно будет охлаждаться, стремясь к абсолютному нулю.
Поэтому на поверхность космических станций и скафандров наносят термостойкое покрытие.
Как реагирует наш организм в открытом космосе
В скафандрах предусмотрены система охлаждения и нагрева для разных внештатных случаев. Поэтому с человеком, который находится в исправном скафандре, ничего опасного не случится.
Реальный случай произошел в 1966 году когда скафандр подвергся декомпрессии, и астронавт на 30 минут потерял сознание. Описывая свои ощущения, он сказал, что слюна в его рту буквально начала кипеть. Это связано с тем, что уменьшилось давление, и, следовательно, уменьшилась температура кипения. Но кровь не подверглась кипению, так как была защищена сосудами.
Источник
Почему в космосе холодно, если Солнце горячее
Солнце находится на расстоянии около 150 миллионов километров от Земли, но мы можем чувствовать его тепло каждый день. Удивительно, как горящий объект издалека может излучать тепло на таком большом расстоянии.
Мы не говорим о температурах, которые едва регистрируют его присутствие. В 2019 году температура в Кувейте достигла 63 ° C под прямыми солнечными лучами. Если вы будете стоять при таких температурах в течение длительного периода, вы рискуете умереть от теплового удара.
Но больше всего озадачивает то, что космическое пространство остается холодным. Итак, почему пространство такое холодное, если Солнце такое жаркое?
Чтобы понять это удивительное явление, важно сначала распознать разницу между двумя терминами, которые часто используются взаимозаменяемо: тепло и температура.
Роль тепла и температуры
Проще говоря, тепло — это энергия, хранящаяся внутри объекта, в то время как тепло или холодность этого объекта измеряется температурой. Таким образом, когда тепло передается объекту, его температура повышается. И происходит снижение значения температуры, когда тепло извлекается из объекта.
Эта передача тепла может происходить через три режима: проводимость, конвекция и излучение.
Теплопередача через проводимость происходит в твердых телах. Когда твердые частицы нагреваются, они начинают вибрировать и сталкиваться друг с другом, передавая тепло при этом от более горячих частиц к более холодным.
Теплопередача через конвекцию — явление, наблюдаемое в жидкостях и газах. Этот режим теплопередачи также происходит на поверхности между твердыми телами и жидкостями.
Когда жидкость нагревается, молекулы поднимаются вверх и переносят тепловую энергию вместе с ними. Комнатный обогреватель — лучший пример, демонстрирующий конвективный теплообмен.
Когда обогреватель нагревает окружающий воздух, температура воздуха будет повышаться, и воздух поднимется до верха комнаты. Присутствующий сверху холодный воздух вынужден двигаться вниз и нагреваться, создавая конвекционный ток.
Передача тепла посредством излучения — это процесс, при котором объект выделяет тепло в форме света. Все материалы излучают некоторое количество тепловой энергии в зависимости от их температуры.
При комнатной температуре все объекты, включая нас, людей, излучают тепло в виде инфракрасных волн. Из-за излучения тепловизионные камеры могут обнаруживать объекты даже ночью.
Чем горячее объект, тем больше он будет излучать. Солнце является отличным примером теплового излучения, которое переносит тепло через солнечную систему.
Теперь, когда вы знаете разницу между теплом и температурой, мы очень близки к тому, чтобы ответить на вопрос, поставленный в заголовке этой статьи.
Теперь мы знаем, что температура может влиять только на материю. Однако в космосе недостаточно частиц, и это почти полный вакуум и бесконечное пространство.
Это означает, что передача тепла неэффективна. Невозможно передать тепло посредством проводимости или конвекции.
Излучение остается единственной возможностью.
Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие объект, начинают поглощать энергию. Эта энергия начинает двигаться атомы вибрировать и заставлять их производить в процессе тепло.
Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени.
Горячие предметы остаются горячими, а холодные остаются холодными.
Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло.
Это естественно вызывает вопрос: Что произойдет, если мы поместим что-то вне атмосферы Земли?
Космическое пространство может с легкостью заморозить или сжечь вас
Когда объект находится за пределами земной атмосферы и при прямом солнечном свете, она будет нагрета до около 120°C. Объекты вокруг Земли, и в космическом пространстве, которые не получают прямых солнечных лучей находятся в пределах 10°C.
Температура 10°C обусловлена нагревом некоторых молекул, покидающих земную атмосферу. Однако, если мы измерим температуру пустого пространства между небесными телами в космосе, это будет всего на 3 Кельвина выше абсолютного нуля.
Итак, главный вывод здесь заключается в том, что температуру Солнца можно почувствовать только в том случае, если есть материя, чтобы поглотить ее, в космосе почти нет материи, отсюда и холод.
Две стороны солнечного тепла
Мы знаем, что в затененных областях холодно. Лучшим примером является ночное время, когда температура снижается, так как в этой части Земли нет излучения.
Однако в космосе все немного по-другому. Да, объекты, которые скрыты от солнечного излучения, будут холоднее, чем пятна, которые получают солнечный свет, но разница довольно существенная.
Объект в космосе столкнется с двумя экстремальными температурами с двух сторон.
Давайте возьмем для примера Луну. Области, которые получают солнечный свет, нагреваются до 127°C, а темная сторона Луны будет при температуре замерзания -173°C.
Но почему земля не имеет таких же эффектов? Благодаря нашей атмосфере инфракрасные волны от солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены.
Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.
Другим примером, показывающим полярность температуры в космосе, является влияние солнца на солнечный зонд Parker. Солнечный зонд Parker — это программа НАСА, где зонд был отправлен в космос для изучения Солнца.
Солнечный зонд «Паркер»
В апреле 2019 года зонд находился всего в 15 миллионах миль от Солнца. Чтобы защитить себя, он использовал теплозащитный экран.
Температура теплового экрана, когда он был бомбардирован солнечным излучением, составляла 121°C, в то время как остальная часть зонда имела -150°C.
Космос — это лучший термос
Когда нагревать нечего, температура системы остается прежней. Это относится и к космосу. Солнечное излучение может проходить через него, но нет молекул или атомов, чтобы поглотить это тепло.
Даже когда скала нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.
Следовательно, даже когда солнце излучает, пространство остается холодным как лед!
Источник