Почему вселенная расширяется доклад
Звёздное небо над головой долгое время было для человека символом вечности и неизменности. Лишь в Новое время люди осознали, что «неподвижные» звёзды на самом деле движутся, причём с огромными скоростями. В XX в. человечество свыклось с ещё более странным фактом: расстояния между звёздными системами — галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются. И дело здесь не в природе галактик сама Вселенная непрерывно расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием XX в.
Всё началось, когда Альберт Эйнштейн создал общую теорию относительности. В её уравнениях описаны фундаментальные свойства материи, пространства и времени. («Относительный» по-латыни звучит как relativus — релятивус -, поэтому теории, основанные на теории относительности Эйнштейна, называются релятивистскими).
Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная не получается. Этот результат не удовлетворил великого учёного. Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввёл в них дополнительное слагаемое — так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.
В начале 20-х гг. советский математик Александр Александрович Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два решения для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.
Все эти теоретические рассуждения никак не связывались учёными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширение видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения её спектральных линий.
Ещё во втором десятилетии XX в. американский астроном Весто Слайфер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.
Хаббл определил расстояния до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.
Означает ли это, что наша Галактика является центром, от которого и идёт расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстоянию до них. Само пространство как бы раздувается. Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причём тем быстрее, чем дальше они расположены друг от друга.
Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звёздные системы повсюду во Вселенной сохраняют свой объём. Это объясняется тем, что составляющие их звёзды связаны между собой силами гравитации.
Факт постоянного расширения Вселенной установлен твердо. Самые далёкие из известных галактик и квазаров имеют такое большое красное смещение, что длины волн всех линий в их спектрах оказываются больше, чем у близких источников, в пять-шесть раз!
Но если Вселенная расширяется, то сегодня мы видим её не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Ещё раньше отдельных галактик просто не могло существовать, а ещё ближе к началу расширения не могло быть даже звёзд. Эта эпоха — начало расширения Вселенной — удалена от нас на 12-15 млрд лет.
Оценки возраста галактик пока слишком приближённы, чтобы уточнить эти цифры. Но надёжно установлено, что самые старые звёзды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звёздных систем возникло в тот период, когда плотность вещества во Вселенной бьша значительно выше современной.
На начальной стадии всё вещество Вселенной имело настолько высокую плотность, что её даже невозможно себе представить. Идею о расширении Вселенной из сверхплотного состояния ввёл в 1927 г. бельгийский астроном Жорж Леметр, а предположение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом.
Но остаётся множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время — одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты — звёзды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и многие другие вопросы работают современные астрономы и физики
Источник
Почему вселенная расширяется? И как долго?
Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.
Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.
Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.
На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.
Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.
Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.
Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).
Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».
Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.
Теория большого взрыва и эволюция вселенной
Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.
Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.
Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.
Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.
В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.
Космическое микроволновое фоновое излучение
Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.
Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.
Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».
Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.
Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.
Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.
Темная энергия и конечная судьба Вселенной
На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.
Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.
Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.
В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!
Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.
Тем не менее похоже, что Эйнштейн не так сильно ошибался.
Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.
В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.
Источник
➤ Adblockdetector