Космические скорости
Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?
На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.
Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.
Траектория полета космических кораблей
Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:
- v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
- v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
- v3 — покинуть при запуске планету, преодолев притяжение Звезды;
- v4 — при запуске из планетной системы объект покинул Галактику.
Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.
Первая космическая скорость
Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.
Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Формула
где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения —
Вторая космическая скорость
Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.
Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).
Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:
- для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
- для Солнца вторая космическая скорость составляет 617,7 км/с.
- для Луны скорость убегания равна 2,4 км/с , несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.
Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.
Формула
Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .
Третья космическая скорость
Третья космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.
Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.
Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.
Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.
При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.
Четвёртая и пятая космическая скорости
Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.
Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.
Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.
По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.
Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.
Видео
Источник
10 фактов о новой амбициозной миссии NASA к Солнцу
На фоне ежедневных новостей, рассказывающих о том, как очередная частная космическая компания запустила свою первую (вторую, третью и так далее) ракету, повезла груз на МКС, готовится к открытию сезона космического туризма, а еще строит планы по колонизации ближайших соседних планет, новости от больших государственных космических агентств как-то начинают теряться. А меж тем напомним, что аэрокосмическое агентство NASA начало весьма амбициозную миссию по исследованию Солнца.
Солнце — это чертовски жаркая штука
12 августа 2018 года с базы ВВС США на мысе Канаверал во Флориде был произведен запуск ракеты-носителя Delta IV Heavy. Груз – солнечный зонд «Паркер», задача которого заключается в преодолении почти 150 миллионов километров космического пространства и рандеву Солнцем. «Паркер» должен будет подобраться к звезде настолько близко, насколько не подбирался до него ни один космический аппарат. По пути к Светилу зонд осуществит несколько гравитационных маневров вокруг Венеры, став по прогнозам NASA станет самым быстрым рукотворным объектом в космосе. Сегодня поговорим о 10 самых интересных фактах, связанных с этой миссией.
Можно ли прикоснуться к Солнцу
Может ли космический корабль долететь до солнца?
Перед Солнечным зондом «Паркер» поставлена задача, которую до этого не смог бы выполнить ни один из созданных человеком космических аппаратов. Он займется изучением внешней атмосферы Солнца. Так называемой короны. Для этого он подберется к звезде на расстояние 6,2 миллиона километров, фактически «прикоснувшись» к внешнему слою ее атмосферы. Аппарат будет заниматься не только решением загадок звезды, но еще и пополнит наш багаж знаний о том, каким образом Солнце влияет на магнитосферу нашей планеты. Важность этой миссии сложно переоценить, поскольку все более распространенными становятся технологии, на которые так или иначе влияет активность нашего Светила. Вполне возможно, что данная миссия увеличит наши возможность по изучению Солнечной системы в целом.
Сколько длится подготовка к космической миссии
Кажется, что такая ракета может долететь куда угодно.
Запуск зонда в августе 2018 года стал кульминацией более 50 лет разработок и планирования этой космической миссии. О том, что температура солнечной короны может достигать миллиона градусов Цельсия научное сообщество выяснило еще в 40-х годах прошлого века. Подтверждение существования так называемого солнечного ветра (высокозаряженных ионизированных частиц плазмы, выбрасываемых короной) состоялось в 60-х годах. Однако ученые до сих пор не могут понять, почему температура короны Солнца гораздо выше температуры поверхности звезды. Кроме того, непонятно что именно ускоряет частицы солнечного ветра. Ответы на эти вопросы можно будет получить только при непосредственном контакте с солнечной короной, считают исследователи.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Идея провести подобное исследование впервые была предложена еще в 1958 году. С тех пор несколько космических аппаратов приближались к Солнцу, но ни один из них не сближался со звездой настолько, насколько по прогнозам это должен сделать солнечный зонд «Паркер».
Первый космический аппарат NASA, названный в честь живого человека
Иногда космические аппараты называют в честь живых людей.
Аэрокосмическое агентство NASA давало своим космическим аппаратам самые разные имена, но ни один из них не назывался в честь еще живого человека. Солнечный зонд «Паркер» назван в честь астрофизика Юджина Паркера, который в 1958 году предсказал существование солнечного ветра.
В 50-х годах Паркер вывел сложную теорию о том, как звезды отдают свою энергию. Он ввел понятие «солнечный ветер» для описания каскадных выбросов энергии Солнца и даже предложил теорию, объясняющую причину более высокой температуры солнечной короны по сравнению с поверхностью звезды. Кроме того, астрофизик рассмотрел модель внешней атмосферы Солнца с постоянным истечением вещества из короны и показал, что скорость солнечного ветра растет с удалением от Солнца, достигая сверхзвуковых значений. Ученый также проанализировал влияние расширяющейся короны на магнитное поле в окрестностях Солнца и нашел, что поле должно быть спиральным вследствие вращения Солнца. Его выводы о скорости солнечного ветра и спиральной структуре солнечного магнитного поля были впоследствии подтверждены с помощью космических аппаратов. Сейчас Паркеру 91 год. Несмотря на возраст, 12 августа, в день запуска зонда астрофизик присутствовал на стартовом комплексе.
Солнечный ветер
Общее представление о солнечном ветре.
Основные научные цели миссии будут в целом сосредоточены вокруг секретов, связанных с солнечным ветром. Создающиеся внутри короны порывы могут достигать скорости в 1,6 миллиона километров в час. Ученые из NASA надеются выяснить, почему солнечная корона такая горячая и что именно ускоряет движение солнечного ветра. Эти вещи невозможно выяснить без нахождения рядом с источником механизмов, отвечающих за эти процессы.
До Солнца очень сложно добраться
Такая картинка выглядит довольно фантастической.
На самом деле для полета к Солнцу требуется в 55 раз больше энергии, чем на полет к Марсу. Во-первых, расстояние от Земли до нашей звезды составляет порядка 150 миллионов километров. Но расстояние не единственный фактор, выступающий здесь проблемой. Основной проблемой здесь выступает так называемая боковая скорость, то есть скорость относительно желаемого вектора движения.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Для понимая принципа боковой скорости необходимо понимать, как тела двигаются на орбитах. На самом деле все объекты на орбите Солнца бесконечно падают на звезду. Однако боковая скорость не даем им упасть, поскольку они фактически обгоняют тело, на которое падают. Земля движется вокруг Солнца со скоростью 108 000 километров в час. В итоге, когда аппарат сойдет с орбиты Земли, он будет двигаться в пространстве «вперед» и начнет падать на Солнце, но будет постоянно промахиваться, поскольку будет сохраняться показатель его боковой скорости. Для того, чтобы попасть к звезде, аппарату необходимо просто падать.
Для решения вопроса боковой скорости NASA планирует использовать гравитационные маневры вокруг Венеры. Они позволят почти полностью погасить этот показатель, но при этом повысят максимальную скорость движения Солнечного зонда «Паркер», которая на пике сможет составить до 200 километров в секунду.
Гравитационные маневры вокруг Венеры
На своем пути аппарат может сделать гравитационный маневр вокруг Венеры.
Чтобы максимально сблизиться с Солнцем, Солнечному зонду «Паркер» придется выполнить несколько гравитационных маневров вокруг Венеры в течение 7 ближайших лет.
После первого пролета Венеры, зонд выйдет на эллиптическую орбиту с периодом 150 дней (2/3 от периода Венеры), делая 3 оборота, когда Венера делает 2. После второго пролета, период уменьшится до 130 дней. Менее чем через 2 оборота (198 дней) космический аппарат встретиться с Венерой в третий раз. Это сократит период до половины венерианского (112,5 дней). На четвертую встречу период будет составлять уже 102 дня. Через 237 дней зонд встретит Венеру в пятый раз, и период вращения сократиться до 96 дней (3/7 от венерианского). Аппарат на этот момент будет делать уже 7 оборотов, когда Венера будет делать только 3. Шестая встреча состоится почти через два года после предыдущей и сократит период до 92 дней (2/5 от венерианского). После еще пяти оборотов вокруг Солнца, зонд встретится с Венерой в седьмой и последний раз, что уменьшит период до 88-89 дней, позволив подойти еще ближе к Солнцу.
Самый быстрый космический аппарат в истории человечества
На скорости почти 700 000 км/ч. долететь можно будет хоть до Солнца.
Благодаря нескольким гравитационным маневрам вокруг Венеры космический аппарат в итоге сможет развить скорость в 692 000 километров в час, что быстрее любого другого космического зонда, построенного человеком.
На данный момент времени самым быстрым космическим аппаратом является зонд «Юнона», предназначенный для изучения Юпитера. Его текущая скорость составляет около 266 тысяч километров в час. Скорость космического аппарата «Вояджер-1», запущенного покорять межзвездное пространство в конце 70-х годов и покинувшего Солнечную систему 35 лет спустя, составляет приблизительно 61 000 километров в час. Максимальная скорость Солнечного зонда «Паркер» более чем в два раза превзойдет скорость «Юноны» и в 11 раз скорость «Вояджера-1».
Тепловой экран
Для защиты от Солнца нужен надежный тепловой экран.
Тепловой экран зонда не менее впечатляет, чем его максимальная скорость. Размер расположенного в фронтальной части аппарата солнечного щита составляет 2,4 метра в диаметре. Он предназначен для отражения экстремального тепла от научного оборудования зонда. Толщина экрана составляет 11,5 сантиметра. Он состоит из углеродной композитной пены, зажатой между двумя углеродными пластинами. Фронтальная пластина, обращенная в сторону Солнца, покрыта специальной белой керамической краской, которая позволяет отражать тепло максимально эффективно. Используемые материалы позволили сделать щит довольно легким. Его вес составляет всего 73 килограмма.
В космосе температура может быть тысячи градусов, но конкретный объект не будет нагреваться, поскольку температура определяется скоростью движения частиц, тогда как тепло измеряется общим количеством энергии, которую они переносят. Частицы могут двигаться быстро (высокая температура), но если их будет немного, то и энергии будет немного (мало тепла). В космосе мало частиц, поэтому немногие из них способны передать энергию аппарату.
Самый автономный космический аппарат
Космический аппарат тоже имеет срок годности.
Одно из объяснений эффективности теплового экрана заключается в очень «умном» программном обеспечении, с помощью которого управляется космический аппарат. Когда зонд будет находиться у Солнца то связь между ним и Землей будет в одностороннем порядке прерываться каждые 8 минут. В течение этого времени зонд сможет самостоятельно всего за 10 секунд вносить необходимые коррективы.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Создатели зонда внесли в его программное обеспечение абсолютно все возможные сценарии развития событий, какие только смогли себе представить, поэтому аппарат способен самостоятельно менять угол наклона и поворота защитного экрана при такой необходимости.
Научный сотрудник проекта Солнечного зонда «Паркер» Никола Фокс называет этот аппарат «самым автономным космическим аппаратом, созданным человеком».
Уникальный груз
Билетик на Солнце.
В марте этого года NASA пригласило общественность принять участие в акции, в рамках которой имена сотен тысяч участников будут помещены на памятную табличку и отправлены к Солнцу вместе с зондом. Одним из участников стал Уильям Шетнер, актер сыгравший капитана Кирка в киноэпопее «Звездный путь». В общей сложности запрос на добавление своего имени на именную табличку в NASA отправили более 1,1 миллиона человек.
«Это, пожалуй, одна из самых амбициозных и экстремальных разведывательных миссий в истории человечества. Кроме того, космический аппарат повезет с собой столько имен людей, сколько поддержат эту миссию», — заявила научный сотрудник программы Никола Фокс.
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
В конце мая 2020 года практически вся планета наблюдала за важным историческим событием. Именно тогда американские астронавты полетели на Международную косми…
NASA проигнорирует предупреждение Артура Кларка не исследовать луну Юпитера — Европу. В «Одиссее Два: 2010», научно-фантастическом романе Артура Кларка 1982 …
Кто знает, как работают солнечные панели? Почти никто. А ведь это самый полезный и универсальный способ получения энергии. Расскажем, как они работают, и почему их важность сложно переоценить.
Источник