Смерть Солнца будет ознаменована салютом
Конец света все-таки случится, но не сейчас, а через пять миллиардов лет. Именно к тому сроку ядро нашего Солнца лишится водорода и превратится в красный гигант. Постепенно от него останется одно только ядро — белый карлик. Этот процесс недавно смоделировали на компьютере Димитрий Верасо и его коллеги из Кембриджского университета (Великобритания).
Прогнозы о том, что Солнце может взорваться, появлялись уже неоднократно. И, как правило, они воспринимаются простыми обывателями как абсурдные. Однако наше Солнце и впрямь не вечно. Вселенная в принципе нестабильна, и любые объекты в ней, включая и звезды, проходят цикл эволюции, начиная с рождения и заканчивая умиранием.
Конечно, не следует воспринимать все так упрощенно. Взрыв на Солнце не произойдет в одночасье, а станет итогом сложных и длительных процессов. Да и случится это в весьма отдаленном будущем, когда человечество, скорее всего, уже покинет Землю — не обязательно погибнув, а, возможно, переселившись в иные миры. Так или иначе, в преддверии катастрофы с Солнцем наши потомки вряд ли будут сидеть сложа руки — наверняка они постараются себя как-то обезопасить…
Обычно звезда начинает свою эволюцию в виде холодного разреженного облака межзвездного газа, сжимающегося под действием собственного тяготения и постепенно принимающего шарообразную форму. В процессе сжатия гравитационная энергия переходит в тепловую и объект «нагревается». Только после того, как температура в центре объекта достигает 15-20 миллионов кельвинов, в нем начинают идти термоядерные реакции, сжатие прекращается, и он становится полноценной звездой.
Большую часть своей жизни звезда средней массы, подобная Солнцу, пребывает в состоянии водородного цикла. Когда она сжигает весь свой запас водородного топлива и водород в ее ядре превращается в гелий, на периферии продолжается термоядерное горение водородных оболочек. В это время растет светимость объекта, расширяются его внешние слои и снижается температура на поверхности. Размеры звезды увеличиваются примерно в сто раз, и она становится красным гигантом. В этой фазе она пребывает значительно меньше времени, чем в водородной, — несколько миллионов лет.
В конце концов, образовавшееся гелиевое ядро не выдерживает собственного веса и начинает сжиматься. Если объект является достаточно массивным, рост его температуры может вызвать трансформацию гелия в более тяжелые элементы, последовательно в углерод, кислород, кремний и железо. Для звезд средней массы этот период может составить миллиарды лет.
Так как реакции сжигания гелия очень чувствительны к температуре, звезда может начать сильно пульсировать и в результате ускорения сбросить внешние оболочки, превратившись в планетарную туманность. В центре маломассивной звезды, подобной Солнцу (а таких большинство), остается одно лишь оголенное ядро, которое из-за прекращения термоядерных реакций остывает и становится гелиевым белым карликом массой до 0,5-0,6 солнечных и диаметром, примерно равным земному. Так как белые карлики лишены источников энергии, остывая, они становятся темными и невидимыми. Более массивные звезды превращаются в нейтронные (пульсары) или в черные дыры. При этом эволюция звезд завершается вспышками сверхновых.
По мере того как Солнце будет терять массу, снизится сила его гравитации. В итоге объекты Солнечной системы могут сойти со своих орбит и отправиться в «открытое плавание». Впрочем, большинство планет, включая Землю, скорее всего, будут сожжены еще на стадии красного гиганта.
Процессы, вызванные умиранием Солнца, достигнут теоретически существующего облака Оорта, находящегося за орбитой Плутона, на границе Солнечной системы. Последнее представляет собой расположенный на расстоянии от 50 до 100 тысяч астрономических единиц от Солнца гигантский пузырь, состоящий из миллиардов крупных ледяных и каменных глыб, постоянно циркулирующих по Солнечной системе в виде комет, иногда падающих на Землю и другие планеты.
На «похудение» светила в конце фазы красного карлика уйдет около ста тысяч лет. Это, по астрономическим меркам, срок совсем короткий. Вряд ли за этот период планеты успеют освободиться от своих орбит. Но при этом научные расчеты показывают, что примерно 20 процентов комет облака Оорта будет выброшено в межзвездное пространство. Наверное, для стороннего наблюдателя это будет выглядеть как мощный фейерверк. Но вряд ли кому-то удастся наблюдать «прощальный салют» со стороны — разве что этим займутся обитатели отдаленных звездных систем…
Читайте самое интересное в рубрике «Наука и техника»
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Источник
Во что превратится Солнце через миллиарды лет?
Солнце – это то, что сопровождает нашу жизнь на Земле уже несколько миллиардов лет. Нам кажется, что оно было, есть и будет всегда. Действительно, по земным меркам миллиарды лет выглядят примерно как вечность. Но по космическим масштабам это не столь большой срок, и Солнце, как и любая звезда, рано или поздно умрет. Как это произойдет, что останется от светила и во что оно превратится?
В настоящее время эволюция звезд изучена достаточно хорошо. Своему рождению любая звезда обязана водороду, который содержится в межзвездных облаках, которые могут достигать огромных размеров – в десятки и даже сотни световых лет при массе, превышающей солнечную в сотни тысяч раз. Если в каком-то участке облака плотность водорода чуть возросла (например, из-за того, что не так далеко взорвалась сверхновая), то облако может начать сжиматься под действием гравитационных сил этого участка – процесс запущен!
Таким образом, главным фактором появления будущей звезды является гравитационная неустойчивость молекулярного облака.
Межзвездные газ и пыль, вращаясь, начинают стягиваться в центр этого плотного образования, и образуют так называемый аккреционный диск, внутренние слои которого с течением времени падают на зарождающуюся звезду. Весь этот процесс сопровождается сильным нагревом вещества и увеличением давления. Процесс становится равновесным в тот момент, когда высокая температура газа создает достаточное давление, чтобы противостоять дальнейшему гравитационному коллапсу.
Так образуется протозвезда, и так когда-то начало образовываться Солнце. Когда же внутри протозвезды благодаря всё повышающейся температуре запускаются термоядерные реакции, которые становятся единственным источником энергии, то она превращается в звезду (кстати, в Солнце ежесекундно сгорает около 4 миллионов тонн вещества). А остатки вещества, которым повезло быть не поглощенными звездой, превращаются в планеты и астероиды – для превращения в звезду им не хватило массы.
Это очень упрощенное объяснение, в котором не берется в расчет множество нюансов. Но в целом этот процесс идет именно так. И 90% своей жизни звезда пребывает в этом состоянии, сжигая водород и синтезируя гелий.
К концу жизни у звезды количество водорода остается небольшое, а гелия в ядре – много. И сценарий дальнейшего умирания звезды сильно зависит от того, какую массу она имеет. Наше Солнце постепенно становится всё горячее. Через миллиард лет оно будет горячее на 11%, чем сегодня – и уже это повлечет возможную гибель всего живого на планете из-за активного испарения воды и глобального парникового эффекта.
Через 3,5 миллиарда лет Солнце станет горячее на 40%. Воды на нашей планете уже не останется, жизнь станет невозможна в любом ее проявлении. Внешняя оболочка Солнца начнет активно расти. Через 6,5 миллиардов лет водород в ядре окончательно закончится и гореть будут только остатки водорода в оболочке Солнца. Давление в ядре станет меньше, и оно под действием гравитации начнет сжиматься, оболочка же, наоборот, будет неуклонно расти из-за горения водорода в ней.
Через 8 миллиардов лет Солнце, расширяясь, начнет активно превращаться в красного гиганта, внешняя граница которого достигнет орбиты Земли. Но в сверхновую Солнце не превратится из-за не столь большой массы. Еще через пару миллиардов лет внешняя оболочка нашей звезды будет сорвана и превращена в планетарную туманность – облако ионизированного газа вокруг оставшегося от Солнца ядра, ставшего белым карликом.
Этот белый карлик будет иметь высокую температуру и плотность при размерах, сравнимых с Землей. И на протяжении десятков миллиардов лет он будет постепенно остывать, пока не превратится в абсолютно холодное и безжизненное тело – черный карлик. И это всё, что останется от Солнца, подарившего некогда жизнь нашей планете.
Источник
Эволюция звезд
Жизненный цикл звезд зависит от их массы: звезды с низкой массой в конечном итоге превращаются в белых карликов, в то время как жизнь звезд с большой массой заканчивается взрывом сверхновых.
Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. Закон Кулона) и вступить в реакцию термоядерного синтеза (см. Ядерный распад и синтез).
В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга—Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.
В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».
Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.
При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.
Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.
Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.
Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.
После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.
Источник