Меню

Постоянная скорость расширения вселенной

С какой скоростью расширяется Вселенная?

Кажется, современная физика дошла до своего экзистенциального кризиса. Наблюдая за тем, как искривляется свет от далеких объектов, исследователи пришли к выводу о том, что методы измерения скорости расширения Вселенной не согласуются с реальными данными. Согласно статье, опубликованной на портале livescience.com, Джефф Чи-фан Чен, космолог из Калифорнийского университета в Дэвисе, подверг сомнению знаменитую константу Хаббла, которая впервые были вычислена американским астрономом Эдвином Хабблом около 100 лет назад. Известно, что выдающийся ученый XX века выдвинул гипотезу о стремительном удалении от Земли каждой галактики во Вселенной со скоростью, пропорционально равной расстоянию этой галактики от нашей Солнечной системы. Так стоит ли нам попрощаться с данной теорией или ей пока еще есть место в современной физике?

Вселенная может расширяться со скоростью, отличной от общепринятой

Как происходит расширение Вселенной?

Вселенная — интересная вещь, которая регулярно подкидывает ученым все новые возможности для обсуждения и споров. На этот раз мироздание показало ученым, что постоянно расширяясь, оно все равно сохраняет прямую зависимость между двумя удаленными друг от друга объектами. Однако основная проблема столь красивого и универсального научного утверждения заключается в том, что современные исследователи разошлись во мнениях относительно самого значения данной константы. Так, измерения, выполненные с использованием космического микроволнового фона (CMB), который представляет собой остатки Большого Взрыва, предполагают, что постоянная Хаббла составляет около 74 351 километра в час на миллион световых лет.

Рассматривая пульсирующие звезды, другая группа астрономов вычислила, что постоянная Хаббла приблизительно равна 81 100 километрам в час на миллион световых лет. Подобное расхождение в вычислениях кажется незначительным, однако именно он показывают, что в методологию расчетов закралась какая-то серьезная ошибка.

Эдвин Хаббл — американский ученый XX века, в честь которого была названа константа расширения Вселенной

Исследователи считают, что из-за того, что массивные объекты деформируют полотно пространства-времени, заставляя свет изгибаться при прохождении сквозь деформированные области, все проводимые вычисления относительно скорости расширения Вселенной могут быть ошибочными. Для того, чтобы подтвердить или опровергнуть данное утверждение, команда H0LiCOW, используя космический телескоп Хаббла, изучила свет, идущий от шести квазаров, расположенных на расстоянии от 3 миллиардов до 6,5 миллиардов световых лет от Земли. В тот момент, когда черные дыры квазаров поглощали материю, их свет мерцал, позволяя ученым исследовать длительность временной задержки между сигналами.

Результат эксперимента команды H0LiCOW показал, что значение постоянной Хаббла соответствует приблизительно 81 000 километров в час на миллион световых лет, что является очень близким показателем к значению, полученному при помощи измерения блеска переменных звезд.

Как бы то ни было, большое количество независимо проведенных измерений продолжает расходиться, показывая новые результаты. Эксперты полагают, что для объяснения происходящего, ученым, возможно, потребуется придумать новую физику. А что думаете по этому поводу вы? Поделитесь своим мнением с единомышленниками в нашем Telegram-чате.

Источник

Насколько быстро расширяется Вселенная?

Команды Хаббла и Гайи объединились, чтобы провести наиболее точное измерение на сегодня

В 1920-х Эдвин Хаббл сделал революционное открытие – оказалось, что Вселенная расширяется. Изначально такое положение вещей предсказывала Общая теория относительности Эйнштейна. Скорость этого расширения получила название «постоянной Хаббла». К сегодняшнему дню с помощью современных телескопов – таких, как телескоп Хаббла – астрономы заново измерили и пересмотрели эту величину уже много раз.

Эти измерения подтвердили, что скорость расширения со временем увеличивалась, хотя учёные не уверены в том, почему. Последние измерения были проведены международной командой учёных, которые использовали данные с Хаббла, а потом сравнили их с данными, полученными на обсерватории Гайя Европейского космического агентства. В результате были получены наиболее точные измерения постоянной Хаббла на сегодняшний день, которые, однако, не сняли вопросы по поводу космического ускорения.

Исследование, описывающее эти открытия, было опубликовано в июле в журнале Astrophysical Journal под названием: «Стандарты цефеид Млечного пути для измерения космических расстояний и их применение к Гайя DR2: последствия для постоянной Хаббла». В исследовании участвовали учёные из Института исследований космоса с помощью космического телескопа, Университета Джонса Хопкинса, Национального института астрофизики, Калифорнийского университета в Беркли, Техасского университета A&M и Европейской южной обсерватории.


Три этапа измерения постоянной Хаббла: измерение параллакса для цефеид, измерение галактик, содержащих цефеиды и сверхновые типа Ia, измерение удалённых галактик, содержащих сверхновые типа Ia.

С 2005 года Адам Рисс – нобелевский лауреат, работающий с Институтом исследований космоса с помощью космического телескопа и Университетов Джонса Хопкинса – работал над уточнением значения постоянной Хаббла, усиливая и улучшая процесс построения космической лестницы расстояний. Вместе со своей командой, известной как «использование сверхновой H0 для вычисления уравнения состояния» (Supernova H0 for the Equation of State, SH0ES), они успешно уменьшили погрешность измерений скорости расширения Вселенной до 2,2%.

Если подробно, то астрономы традиционно используют шкалу расстояний в астрономии, или лестницу расстояний, для измерения расстояний до дальних объектов Вселенной. Она строится на основе таких вех, как переменные звёзды цефеиды – пульсирующие звёзды, расстояние до которых можно вычислить, сравнивая их абсолютную яркость с видимой [а абсолютную яркость вычислить, исходя из периода пульсаций / прим. перев.]. Такие измерения затем сравниваются с красным смещением света, приходящим от далёких галактик, чтобы определить, насколько быстро расширяется пространство между галактиками.

Читайте также:  Все типы звезд вселенной

Отсюда выводится и постоянная Хаббла. Ещё один метод, это наблюдение за реликтовым излучением, и отслеживание расширения ранней Вселенной — когда с Большого взрыва прошло примерно 378 000 лет – из которых при помощи физики и экстраполяции выводится современная скорость расширения. Вместе этим методы должны обеспечить график расширения Вселенной с самого начала и до сегодняшних дней.

Однако астрономы уже довольно давно знают, что два этих измерения не совпадают между собой. В предыдущем исследовании, когда Рисс с командой также проводили исследования при помощи телескопа Хаббла, они получили значение постоянной, равное 73 км/с/Мпк. Тем временем, результаты, полученные из измерений обсерватории Планк (наблюдавшей за реликтовым излучением с 2009 по 2013 года), говорят о том, что постоянная Хаббла должна равняться 67 км/с/Мпк, и уж точно не более 69 – а это расхождение на целых 9%.


Реликтовое излучение в псевдоцветах

Как отметил Рисс в недавнем пресс-релизе НАСА:

Напряжённость переросла в настоящую несовместимость нашего представления о ранней и поздней Вселенной. Встало ясно, что это уже не следствие какой-то жуткой ошибки в одном из измерений. Это похоже на то, как если бы вы предсказали рост ребёнка по графику роста людей, а потом обнаружили, что, повзрослев, он очень сильно превысил ожидания. Мы совершенно сбиты с толку.

В данном случае Рисс с коллегами использовали телескоп Хаббл для оценки яркости удалённых цефеид, а Гайя предоставила данные по параллаксу – видимому изменению местоположения объекта в зависимости от точки зрения – необходимые для определения расстояния. Ещё один вклад Гайи заключался в измерении расстояния до 50 цефеид Млечного пути, которые были скомбинированы с измерениями Хаббла.

Это позволило астрономам более точно откалибровать Цефеиды и использовать те из них, что находятся вне Млечного Пути, в качестве маркеров. Используя измерения, полученные с Хаббла и новые данные от Гайи, Рисс с коллегами смогли уточнить измеренное значение скорости расширения до 73,5 км/с/Мпк.


Спутник Гайя Европейского космического агентства в данный момент выполняет свою пятилетнюю миссию по построению карты звёзд Млечного Пути.

Стефано Казертано из Института исследований космоса с помощью космического телескопа и член команды SH0ES добавил:

Хаббл удивительно хорошо справляется с ролью обсерватории общего назначения, но Гайя – это новый стандарт калибровки расстояний. Он специально создан для измерения параллакса – его для этого разработали. Гайя даёт новые возможности по рекалибровке всех предыдущих измеренных расстояний и подтверждает нашу предыдущую работу. Мы получаем ту же самую величину для постоянной Хаббла, заменяя все предыдущие калибровки шкалы расстояний просто величинами параллаксов, полученными от Гайи. Это перекрёстная проверка двух мощнейших и точных обсерваторий.

В будущем Рисс и его команда надеются продолжать работать с Гайей, чтобы уменьшить погрешность, связанную с постоянной Хаббла, до 1% к началу 2020-х. Тем временем расхождение между современной скоростью расширения и той, что получена из данных по реликтовому излучению, будет продолжать удивлять астрономов.

В итоге это может стать признаком того, что во Вселенной работает какая-то другая физика, что тёмная материя взаимодействует с нормальной материей не так, как подозревали учёные, или, что тёмная энергия может оказаться ещё более экзотической, чем считалось ранее. Какой бы ни была причина, ясно, что у Вселенной ещё найдутся для нас сюрпризы!

Источник

О параметре Хаббла и скорости расширения Вселенной

Для начала стоит пояснить, как измеряется скорость расширения Вселенной для тех, кто не читал предыдущие части или подзабыл: чем дальше объект, тем он быстрее от нас удаляется по закону Хаббла. Основным параметром, характеризующим изменение скорости расширения является постоянная Хаббла — это значение ок. 69 км/с/Мпк. То есть объект, находящийся на расстоянии в один мегапарсек (3 260 000 световых лет), будет удаляться от нас со скоростью 69 км/с. Но так было не всегда.

Когда-то постоянная Хаббла не была другой (отсюда ее и постоянной не назовешь) — в зависимости от плотности материи меняется и значение постоянной. Раньше плотность вещества была выше — то есть была больше и хаббловская величина и скорость расширения. При высочайшей плотности, в начальной стадии развития Вселенной, произошла эпоха инфляции, когда ткань пространства-времени расширялась невероятно быстро: этот период длился с 10^-35 сек до 380 000 лет. Но сейчас она должна расширяться медленнее и медленнее, ускорение расширения должно падать, но пока что идет спор о природе увеличения ускорения расширения, так как в последние годы стала популярна теория темной материи, которая позволяет ускорить расширение.

В эпоху Хаббла, когда не существовало технологий для обнаружения далеких (+1 млрд ly) галактик, ученые считали, что удаление объектов от нас (то есть расширение Вселенной) линейно. Со временем, заглядывая все дальше вглубь Метагалактики, мы обнаружили, что далекие объекты удаляются от нас намного быстрее, чем это ожидалось по закону Хаббла. Наблюдательное красное смещение (грубо говоря, отношение скорости и постоянной Хаббла) не совпадает с теоретическими расчетами. Почему?

Существует прямолинейная зависимость, определяющая верность закона Хаббла: отношение расстояния к радиальной скорости. Отсюда можно понять, что постоянная Хаббла на самом деле является параметром — изменяемой величиной. Это предсказывал еще Александр Фридман за 2 года до хаббловского открытия: его первое уравнение, определяющее скорость расширения и эволюцию пространства-времени в зависимости от форм материи и энергии, а также кривизны. Русский геолог вычислил закономерность падения плотности материи, излучения и темной энергии — последняя из них постоянна.

Читайте также:  Модели нестационарной вселенной по фридману суть

Из уравнения легко понять, что при повышенной плотности скорость расширения больше, а при меньшей — меньше. Дошедший за миллиарды лет свет галактик показывает нам их вид, какими они были многие годы назад, когда плотность материи и скорость расширения была выше. Темная энергия заработала примерно вполовину возраста Вселенной: около 6-7 млрд лет назад, когда скорость расширения была на 80% выше сегодняшней; 13 млрд лет назад скорость расширения была в 17 раз больше, чем сейчас; через 115 млрд лет скорость расширения упадет пятикратно.

Вселенная Айлашкерского — исследуем космос вместе!

Источник

Сюрприз: постоянная Хаббла на самом деле непостоянна


Часть изображения, полученного в рамках наблюдения Hubble eXtreme Deep Field, в комбинированном ультрафиолете, видимом свете и инфракрасном излучении – самого глубокого взгляда во Вселенную из всех, что мы предпринимали. Различные видимые здесь галактики находятся на разных расстояниях и имеют разное красное смещение, что позволяет нам вывести закон Хаббла.

Вселенная огромна, и на миллиарды световых лет во всех направлениях заполнена звёздами и галактиками. С самого Большого взрыва свет путешествует, отправляясь с каждого создавшего его источника, и совсем малая часть этого света доходит до наших глаз. Но свет не просто перемещается через пространство из точки испускания и до того места, где мы находимся сегодня; кроме этого, расширяется сама ткань пространства.

Чем дальше от нас находится галактика, тем больше пространство между нами растягивает – и смещает в красную часть спектра – тот свет, что в итоге прибудет к нашим глазам. Заглядывая на всё более далёкие расстояния, мы видим увеличение красного смещения. Если построить график того, как видимая скорость удаления зависит от расстояния, мы получим красивое, прямолинейное взаимоотношение: закон Хаббла. Но наклон этой линии, постоянная Хаббла, на самом деле совсем не постоянен. И это одно из наиболее сильных заблуждений во всей астрономии.


Зависимость красного смещения от расстояния для удалённых галактик. Не попадающие на линию точки смещены из-за разности пекулярных скоростей, но они лишь немного отклоняются от наблюдаемой общей картины. Изначальные данные, полученные самим Эдвином Хабблом, и впервые использованные для демонстрации расширения Вселенной, умещаются в небольшой красный прямоугольник в левом нижнем углу.

Расширение Вселенной мы понимаем двояко: теоретически и через наблюдения. Наблюдая за Вселенной, мы видим несколько важных фактов, связанных с расширением:

  • Вселенная расширяется с одной скоростью во всех направлениях.
  • Чем дальше находится галактика, тем быстрее она от нас удаляется.
  • Всё это верно только в среднем.

У отдельных галактик наблюдается большой разброс реальных скоростей, существующий благодаря гравитационным взаимодействиям со всем веществом Вселенной.


Двумерный срез ближайших к нам участков Вселенной, плотность которых выше (красное) и ниже (синее/чёрное) среднего значения. Линии и стрелки показывают направления пекулярных скоростей, но вся эта картина включена в ткань расширяющегося пространства.

Но эта проблема не является непреодолимой. Во Вселенной есть не просто несколько галактик, расстояние и красное смещение которых мы можем измерить; мы провели такие измерения буквально для миллионов галактик. Огромное количество галактик мы можем сгруппировать так, чтобы каждая группа находилась на определённом среднем расстоянии от нас, и мы могли бы подсчитать их среднее красное смещение. После такой процедуры мы обнаруживаем прямолинейную зависимость, определяющую закон Хаббла.

Но вот, в чём сюрприз. Если заглянуть на достаточно большие расстояния, становится видно, что скорость расширения уже не подчиняется прямолинейному закону, и начинает закругляться.


Зависимость скорости видимого расширения (ось у) от расстояния (ось х) соответствует тому, что Вселенная в прошлом расширялась быстрее, однако расширяется и сегодня. Это современная (2014 год) версия работы Хаббла, распространяющаяся на расстояния в тысячи раз большие. Заметим, что точки не формируют прямую линию, а значит, скорость расширения со временем меняется.

Используя термин «постоянная Хаббла», мы имеем в виду наклон этой линии. Если это не линия – то есть, если её наклон меняется – это говорит о том, что хаббловская скорость расширения Вселенной не является константой! Мы называем её постоянной Хаббла потому, что Вселенная расширяется с одной и той же скоростью в любой её точке: постоянная Хаббла постоянна в пространстве.

Но скорость расширения, и значение постоянной Хаббла, изменяются со временем. Это не загадка, а то, чего и следовало ожидать. Чтобы это понять, давайте посмотрим на это с другой точки зрения: теоретической.


Итан Сигель на фоне гиперстены Американского астрономического общества в 2017 году, вместе с первым уравнением Фридмана, справа.
#МоёЛюбимоеУравнение
Первое уравнение Фридмана предсказывает скорость расширения Вселенной на основании её содержимого

Первое уравнение Фридмана получается у нас, если начать со Вселенной, равномерно заполненной материей, излучением и всеми остальными формами энергии. Единственные используемые здесь предположения – Вселенная изотропна (одинаковая во всех направлениях), гомогенна (имеет одинаковую плотность повсюду) и подчиняется Общей теории относительности. Приняв это, вы получаете взаимоотношение величины H, скорости Хаббла (слева) и различных форм материи и энергии Вселенной (справа):

Читайте также:  Эволюция вселенной началась с большого ответ писать строчными буквами


Первое уравнение Фридмана, как его обычно записывают сегодня. Левая часть определяет скорость расширения и эволюцию пространства-времени, а правая включает все различные формы материи и энергии, а также пространственную кривизну

Что интересно, с расширением Вселенной плотности материи, излучения и энергии могут меняться. К примеру, с расширением Вселенной увеличивается её объём, но общее количество частиц остаётся неизменным. Это означает, что в расширяющейся Вселенной:

  • плотность материи падает как a -3 ,
  • плотность излучения падает, как a -4 ,
  • плотность тёмной энергии остаётся постоянной, и эволюционирует, как a 0 ,

где a – фактор масштаба (расстояние или радиус) Вселенной. Со временем a растёт, и различные компоненты Вселенной становятся более или менее важными относительно друг друга.


Как материя (вверху), излучение (в середине) и космологическая константа (внизу) развиваются со временем в расширяющейся Вселенной

Вселенная с большей плотностью энергии расширяется быстрее. И наоборот, вселенная с меньшей плотностью энергии расширяется медленнее. С возрастом Вселенная расширяется: при расширении материя и излучение становятся менее плотными; с уменьшением плотности уменьшается и скорость расширения. В любой момент времени скорость расширения определяет значение постоянной Хаббла. В далёком прошлом скорость расширения была гораздо больше, а сегодня – наименьшая.


Различные компоненты и вклады в плотность энергии Вселенной, и периоды их доминирования. Если бы космические струны или стены доменов существовали в каком-то значимом количестве, они вносили бы существенный вклад в расширение Вселенной. Могут даже быть и какие-то другие компоненты Вселенной, которых нам уже больше не видно, или которые ещё только собираются проявить себя! К сегодняшнему моменту тёмная энергия доминирует, материя достаточно важна, а излучением можно пренебречь.

Так почему же очень удалённые галактики подчиняются этому прямолинейному соотношению? Потому, что весь свет, прибывающий к нашим глазам, от света, испущенного соседней галактикой, до света, испущенного галактикой, находящейся в миллиардах световых лет от нас, к моменту подхода к нам достигает возраста в 13,8 млрд лет. Ко времени прихода света всё во Вселенной прожило ту же самую постоянно меняющуюся Вселенную, что и мы. Постоянная Хаббла в прошлом, когда была испущена большая часть света, была выше, но на то, чтобы этот свет прибыл к нашим глазам, ушло миллиарды лет.


Свет может быть испущен с разной длиной волны, но расширение Вселенной растянет его в пути. Свет, испущенный галактикой 13,4 млрд лет назад в ультрафиолете, будет сдвинут в инфракрасный диапазон.

Со временем Вселенная расширялась, а значит, длина волны света увеличивалась. Тёмная энергия стала достаточно важной лишь в последние 6 млрд лет, и мы дошли до момента, когда она довольно быстро становится единственным компонентом Вселенной, влияющим на скорость её расширения. Если бы мы вернулись в то время, когда Вселенная была в два раза моложе, то скорость расширения была бы на 80% больше сегодняшней. А когда Вселенной было 10% от текущего возраста, скорость расширения была в 17 раз больше, чем сегодня.

Когда Вселенная станет в десять раз старше, чем сегодня, её скорость расширения составит 18% от сегодняшней.


Голубым закрашен диапазон возможных неопределённостей того, как плотность тёмной энергии может отклоняться в прошлом и будущем. Данные указывают на наличие истинной космологической «константы», но другие возможности пока никто не отверг. К сожалению, преобразование материи в излучение не может быть кандидатом на тёмную энергию; в результате его то, что раньше вело себя, как материя, просто ведёт себя, как излучение.

Всё из-за наличия тёмной энергии, ведущей себя, как космологическая константа. В далёком будущем материя и излучение станут относительно неважными по сравнению с тёмной энергией, а значит, плотность энергии Вселенной будет оставаться постоянной. В таких условиях скорость расширения достигнет устойчивой и конечной величины, и таким и останется. В далёком будущем постоянная Хаббла станет постоянной не только в пространстве, но и во времени.

В далёком будущем, измерив скорость и расстояние до всех видимых объектов, мы получим одинаковый наклон этой линии повсюду. Постоянная Хаббла станет истинно постоянной.


Относительная важность различных компонентов энергии Вселенной в различное время в прошлом. Когда тёмная энергия приблизится в будущем к отметке в 100%, плотность энергии Вселенной будет оставаться постоянной на сколь угодно большом промежутке времени.

Если бы астрономы точнее обращались со словами, они назвали бы H параметром Хаббла, а не постоянной Хаббла, поскольку она меняется со временем. Но несколько поколений подряд мы могли измерять относительно небольшие расстояния, и H казалась постоянной, поэтому мы не стали её переименовывать. Нам приходится лишь уточнять, что H это функция времени, и только сегодня – когда мы называем её H0 — она постоянна. На самом деле параметр Хаббла изменяется со временем, и остаётся постоянным только по всему пространству. Но если бы мы дожили до далёкого будущего, мы увидели бы, что H в какой-то момент перестаёт меняться. Сегодня мы можем тщательно разделять реальные постоянные величины и те, что меняются со временем, но в далёком будущем благодаря тёмной энергии этой разницы уже не будет.

Источник

Adblock
detector