Меню

Поступающая от солнца энергия

Как на Земле развивается использовании энергии Солнца?

Небесное светило дарит нам бесплатно огромное количество энергии. Всего за 15 минут звезда отдаёт нашей планете объём энергии, которого человечеству хватит для обеспечения электричеством на один год. Качество и эффективность солнечных батарей постоянно совершенствуются и становятся дешевле. Однако до массового использования энергии солнца пока далеко. Есть ряд проблем, из которых особенно остро стоит эффективность оборудования для преобразования солнечного излучения. В основном это касается фотоэлектрических элементов, эффективность которых лежит в интервале 12─17 процентов. Но ещё в середине прошлого столетия она составляла около 1%. Так, что прогресс постепенно идёт, хотя и не быстро. Поэтому в будущем энергия солнца должна занять достойное место в мировой энергетике. В этом материале речь пойдёт об использовании солнечной энергии в хозяйственной деятельности на Земле. Поговорим о проблемах и перспективах, а также приведём примеры оборудования.

Общая информация о поступающей от Солнца энергии

Солнце служит первоначальным источником всех энергетических процессов на Земле. Звезда отправляет в сторону нашей планеты 20 миллионов эксаджоулей за год. Поскольку Земля круглой формы на неё попадает примерно 25%. Из этой энергии примерно 70 процентов поглощается атмосферой, отражается и уходит на прочие потери. На поверхность Земли попадает 1,54 миллиона эксаджоулей в год. Эта цифра в несколько тысяч раз больше, чем энергопотребление на планете. Кроме того, эта величина в 5 раз превышает весь энергетический потенциал углеводородного топлива, накопленных на Земле за миллионы лет.

Солнце – неиссякаемый источник энергии

Растения на Земле потребляют всего лишь 0,5 процента энергии, доходящей до Земли. Поэтому, даже если человечество будет существовать только за счёт энергии солнца, они будут потреблять лишь малую её долю. Энергии Солнца на Земле вполне достаточно для энергетических потребностей цивилизации. При этом мы возьмём лишь небольшую часть энергии, и это никак не скажется на биосфере. Солнце отправляет на Землю огромное количество энергии. За несколько дней её количество превышает энергетический потенциал всех разведанных запасов топлива. Даже треть от этого количества, которое попадает на Землю, в тысячи раз превышает все традиционные источники энергии.

Солнечная энергия экологически «чистая». Конечно, ядерные реакции, проходящие на Солнце, порождают радиоактивное загрязнение. Но оно находится на безопасном расстоянии от Земли. А вот сжигание углеводородов и атомные электростанции создают загрязнения на Земле. Кроме того, энергия Солнца постоянна и присутствует в избыточном количестве.

Солнечная энергия практически неиссякаема

Какие есть проблемы при использовании солнечной энергии?

Казалось бы, всё прекрасно и нужно переходить на использование энергии солнца. Оказывается, есть ряд проблем. Каких же? Основная проблема заключается в том, что поступающая энергия сильно рассеивается. На один квадратный метр попадает примерно 100─200 ватт. Точное количество зависит от расположения этого места на Земле. Кроме того, Солнце светит днём, и мощность в это время достигает 400—900 ватт на квадратный метр. А ночью энергии не поступает, а пасмурную погоду поступает значительно меньше. То есть, в какие-то моменты нужно собирать весь этот энергетический поток и накапливать. А когда солнечный свет на землю не падает, использовать накопленную энергию.

Использование солнечной энергии на Земле

Но в целом гелиосистемы являются очень перспективной сферой энергетики. Стоит ещё немного подрасти в цене энергоносителям, и они станут очень востребованы. На Земле много районов, где практически постоянно светит солнце. Это степи, пустыни. При установке там солнечных электростанций и получения электроэнергии можно обустроить эту землю и сделать её плодородной. Энергия будет расходоваться на подвод воды и нужды населения.

Читайте также:  Солнце как бог доказательства

Экскурс в прошлое

Когда-то в глубокой древности язычники воспринимали Солнце в качестве божества. Конечно, в те времени использование солнечной энергии отсутствовало, как таковое. Это было нечто магическое. Но первые попытки использования солнечной энергии предпринимались уже довольно давно. Если не брать во внимание легенду о сожжённом с помощью концентрированной солнечной энергии флоте в Древней Греции, то настоящее использование энергии Солнца началось в XIX─XX веках. В 1839 году учёный Беккерель открыл фотогальванический эффект. Спустя несколько десятилетий Чарльз Фриттс разработал солнечный модуль, основой которого стал селен, покрытый золотом. Первые солнечные панели, которые были выпущены в XX веке имели КПД не более 1%. Но на тот момент это было настоящим прорывом. В результате для учёных открылись новые горизонты для исследований и новых открытий.

Одна из первых гелиосистем

Альберт Эйнштейн также внёс значительный вклад в развитие солнечной энергетики. Конечно, среди его достижений чаще всего упоминают теорию относительности. Но свою Нобелевскую премию он получил за изучение явления внешнего фотоэффекта. Технология производства солнечных панелей для получения электричества постоянно совершенствуется. Поэтому есть надежда, что скоро мы станем свидетелями новых потрясающих открытий в этой области.

Сферы использования солнечной энергии

Область использования энергии солнца довольно широкая и постоянно расширяется. Здесь можно упомянуть даже такую простую вещь, как летний душ баком наверху. Он нагревается от солнца и можно мыться. Использование гелиосистем для частных домов ещё совсем недавно казалось фантастикой, а сегодня стали реальностью. Сейчас выпускается много солнечных коллекторов для обогрева бытовых и производственных помещений. Уже есть модели, которые способны работать при отрицательных температурах. Кроме того, полно всевозможных мобильных power bank на солнечных батареях для зарядки мобильных гаджетов, калькуляторов, часов и другой техники с питанием от фотоэлектрических панелей.

Энергия солнца на сегодняшний день используется в таких сферах народного хозяйства, как:

  • Энергоснабжение частных домов, пансионатов, санаториев;
  • Энергоснабжение населённых пунктов, находящихся вдали от городской инфраструктуры;
  • Сельское хозяйство;
  • Космонавтика;
  • Экотуризм;
  • Уличное освещение, декоративная подсветка на дачных участках;
  • Жилищно-коммунальное хозяйство;
  • Зарядные устройства.

Установки для преобразования солнечной энергии

Давайте, рассмотрим два основных типа установок, которые являются самыми распространёнными на сегодняшний день.

Гелиосистема для получения электрической энергии

Наиболее распространённые системы для преобразования энергии солнца в электричество. Стоят такие системы немало, но после того, как они окупятся, их использование даёт хорошую экономию в расходах на электроэнергию. Частный дом реально обеспечить электропитанием от автономной солнечной электростанции с несколькими фотоэлектрическими панелями. Срок окупаемости установки в российском климате составляет 5 лет, а срок службы солнечных батарей до 30 лет. Можете прочитать подробнее о том, что представляют собой солнечные электростанции.

Гелиосистема для частного дома

Главным минусом таких солнечных систем остаётся низкий КПД. Он лежит в пределах 12─15 процентов. В облачную погоду и того меньше. Но уже разработаны фотоэлектрические панели, которые работают в сумерках и облачную погоду, выдавая необходимый ток. И для обеспечения электроэнергией небольшого дома вполне хватает. В основном солнечные батареи собирают с расчётом на выработку напряжения 12 и 24 вольта. Они объединяются последовательно и параллельно для достижения необходимой мощности. Электроэнергия накапливается в аккумуляторах, а затем подаётся в сеть через инвертор.

Солнечные коллекторы

Солнечные батареи для отопления дома или коллекторы излучение солнца в тепловую энергию. По типу теплоносителя различают воздушные и жидкостные коллекторы. В воздушных циркулирует воздух и они являются гораздо менее эффективными, чем жидкостные. Они способны работать на обогрев помещения только до 5─10 градусов тепла на улице. Воздушные солнечные коллекторы часто применяются для отопления хозяйственных построек и сушки овощей.

Читайте также:  Как будет по марийски солнце

В жидкостных коллекторах в роли теплоносителя используется вода или антифриз. Они имеют гораздо большую эффективность, чем воздушные. Самыми распространёнными видами таких коллекторов являются плоские и вакуумные.

Плоские имеют простую конструкцию и наиболее распространены. Их часто изготавливают самостоятельно в домашних условиях. Они могут быть использованы, как для горячего водоснабжения, так и для отопления помещения. Основным элементом в них является абсорбер, который накапливает тепловую энергию и отдаёт её теплоносителю. Такие установки довольно эффективны, но в зимний период на территории России их использовать проблематично.

Источник

Как рождается энергия Солнца?

Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.

Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?

Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.

Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.

Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.

Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.

Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.

Читайте также:  Что обозначает солнце за нас

Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.

Конвективная зона

Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.

Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.

На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.

Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.

Фотосфера

Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.

Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.

Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).

Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.

Источник

Adblock
detector