Меню

Пояс койпера удаленность от солнца

Пояс Койпера

С тех пор как человечество получило возможность проводить первые настоящие инструментальные исследования космического пространства с помощью зеркальных телескопов, в середине 19 века появилось множество вопросов — а что находится там, за границей нашей Солнечной системы. Ведь уже начиная со времен Н. Коперника и Исаака Ньютона было математически доказано, что имеются гравитационные поля или силы, которые, если так можно сказать, исходят от космических объектов, которые люди пока не были в состоянии увидеть, что в частности и произошло с открытием космического феномена под названием Пояс Койпера.

С появлением космических зондов и исследовательских межпланетных автоматических станций проблема изучения солнечной системы стала более доступна для разрешения. Уже первые космические экспедиции показали, что ученые-теоретики были правы — есть космические тела, которые находятся на самой границе нашей Солнечной системы и изучение которых не менее интересно, чем исследование более далеких галактик с помощью радиотелескопов.

К одному из таких интересных объектов можно отнести и Пояс Койпера, который представляет собой гигантское облако, состоящее из множества небольших планет, астероидов и их осколков. Его исследование может рассказать не только о том, как формировалась наша Солнечная система, но и что ждет ее в будущем.

Где находится Пояс Койпера

За газовым гигантом — планетой Нептун находится область пространства, заполненная ледяными телами, более известное, как пояс Койпера (далее — ПК). Это холодное пространство в миллиарды километров содержит триллионы предметов, остатки ранней солнечной системы. Голландский астроном Ян Оорт впервые предложил в 1950 году, что некоторые кометы могут появляться из дальних «пригородов» Солнечной системы. Это космическое образование позже стало известно, как «облако Оорта». Ранее, в 1943 году, астроном Кеннет Эджворт предположил, что кометы и более крупные тела могут существовать за пределами Нептуна. В 1951 году астроном Джерард Куиперп предсказал существование пояса ледяных объектов, которое теперь носит его имя. Некоторые астрономы называют его «поясом Эджворта-Койпера».

Астрономы всего мира теперь одержимы решением еще более интересной задачи — поиска теперь в ПК пока неизвестной, так называемой «Планеты Девять», гипотетического космического объекта в поясе Койпера, после того как доказательства его существования были обнародованы 20.01.2016 года. Считается, что этот космическое тело примерно в десять раз больше массы Земли и в 5000 раз больше массы Плутона.

Объекты пояса Койпера

Открытие и краткая биография

Вскоре после открытия планеты Плутон астрономы начали задумываться о существовании транс-нептунской системы или скопления объектов во внешней Солнечной системе или в пограничных с ней районах. Первым предложил это сделать Фрекрик К. Леонард в 1921 году, который начал предполагать существование «ультра-нептунианских тел» за пределами Плутона, которые еще не были обнаружены.

В том же году астроном Армин О.Лейшнер предположил, что Плутон «может быть одним из многих долгопериодических (т.е. имеющий период обращения вокруг Солнца десятки земных лет) планетных объектов, которые еще предстоит обнаружить». В 1943 году в «Журнале Британской астрономической ассоциации» Кеннет Эджворт разъяснил эту теорию. Согласно Эджуорту, материал в изначальной солнечной туманности за Нептуном был слишком широко разбросан, чтобы конденсироваться в планеты, и, скорее, сконденсировался в бесчисленное множество мелких тел.

В 1951 году, в статье для журнала Astrophysics, голландский астроном Джерард Койпер предположил, что такие планеты или объекты могут существовать в плоскости орбиты, сформировавшейся в самом начале эволюции Солнечной системы. Некоторые из этих космических тел проходили по внутренней Солнечной системе и превращались в кометы, будучи захваченные гравитационным полем Солнца. Появление идеи «пояса Койпера» имела большой практический смысл для астрономов. Мало того, что это помогло объяснить, почему в Солнечной системе не было больших планет, она также открывала тайну того, откуда прилетают к нам кометы.

В 1980 году, в ежемесячных альманахах Британского Королевского астрономического общества, уругвайский астроном Хулио Фернандес предположил, что для получения наблюдаемого количества комет потребуется кометный пояс, который лежит в диапазоне расстояний между 35 и 50АЕ (астрономическая единица расстояния, которое проходит световой луч за год (световой год).

Читайте также:  Как доказали что земля движется вокруг солнца

Следуя открытиям Фернандеса, в 1988 году канадская команда астрономов (команда Мартина Дункана, Тома Куинна и Скотта Тремейна) провела ряд компьютерных исследований и определила, что «облако Оорта» не может учитывать всех короткопериодических комет.

В 1992 году американский астроном Дэвид Джевитт и аспирант Джейн Луу обнаружили космическое тело в предполагаемом ПК. Это был астероид, внесенный в реестр под номером (15760) 1992QB1. Этот объект был первый, который входит в состав ПК. Тело составляет в размерах около 200-250 км в диаметре, по оценкам его яркости (отраженного света). Он движется по почти круговой орбите в плоскости планетной системы на расстоянии от Солнца около 44 AЕ (6,6 миллиарда км). Это происходит вне орбиты Плутона, средний радиус которой составляет 40 АЕ (6 миллиарда км). Открытие 1992QB1 предупредило астрономов о возможности обнаружения других таких космических тел, что и было фактически подтверждено — в течение двадцати лет было обнаружено около полторы тысячи космических тел.

Крупнейшие объекты пояса Койпера

На основе оценок яркости размеры более крупных известных объектов ПК близки или превышают размеры самой большой луны Плутона, Харон, диаметр которой составляет 1208 км. Одно из них — с именем Eris, почти, в два раза большего диаметра, т.е. немного меньше самого Плутона. Из-за их местоположения вне орбиты Нептуна (средний радиус орбиты 30,1 AЕ или 4,5 миллиарда км), их также называют транс-нептунианскими объектами (TNO).

Некоторые факты

Пояс Койпера представляет собой эллиптическую плоскость в пространстве, охватывающую от 30 до 55 раз расстояние Земли от Солнца, или от 4,6 до 7,5 млрд. километров. Это гигантское скопление космических тел подобно поясу астероидов, найденному между Марсом и Юпитером, хотя объекты в поясе Койпера обычно представляют собой исполинские глыбы льда, а не скалистые, летающие в космосе горы.

По оценкам ученых, тысячи тел диаметром в среднем более ста километров перемещаются вокруг Солнца в этом поясе вместе с триллионами меньших объектов, многие из которых являются короткопериодическими кометами. В этом районе Солнечной системы также есть несколько карликовых планет, слишком большие, чтобы считаться астероидами, и все же не могут быть квалифицированы, как полноценные планеты, потому что они слишком малы, имеют непостоянную орбиту, и не обладают способностью притягивать более мелкие космические осколки. Образно говоря, не «очищают» пространство вокруг себя так, как это делают остальные восемь планет Солнечной системы.

Несмотря на свои огромные размеры, пояс Койпера был обнаружен только в 1992 году. Дэйвом Джуиттом и Джейн Луу. По данным НАСА, с 1987 года они «настойчиво изучали небеса в поисках почти невидимых объектов за пределами Нептуна». Они назвали первый объект, который они заметили «Смайли», но позже он был каталогизирован как «1992 QB1».

Как формировался пояс

Когда формировалась Солнечная система, большая часть газа, пыли, льда и горных пород притягивалось между собой, образуя Солнце и планеты. Планеты затем притянули большую часть оставшихся обломков, немалую часть вобрало в себя Солнце, а некоторые остатки ушли из поля притяжения Солнечной системы. Но тела, находящиеся на самой периферии, оставались в безопасности от гравитационных полей планет, таких как Юпитер или Нептун, и таким образом медленно вращались вокруг Солнца. Пояс Койпера и его «соотечественник», более отдаленное и сферическое облако Оорта, содержат оставшиеся части строительного материала от самого начального момента формирования Солнечной системы и уже только поэтому могут дать очень ценную информацию о ее зарождении.

Есть также модель формирования пояса Койпера «Ницца», согласно которой этот межпланетный галактический пояс космических объектов мог образоваться рядом с Нептуном, который теперь вращается вокруг Солнца. В этой модели планеты совершали причудливые «танцы», пока их орбиты не были окончательно сформированы. Возможно, именно в тот период формирования Солнечной системы, планеты Нептун и Уран менялись не раз местами — когда одна удалялась от Солнца, другая планета приближалась к нему. Вполне вероятно весь этот галактический «строительный мусор», который был на околопланетных орбитах, и послужил началу формирования пояса Койпера.

Читайте также:  Нептун восьмая планета от солнца

Из чего состоит Пояс Койпера

Классический пояс Койпера — его самый густонаселенный объектами участок Солнечной системы. На вопрос где находится пояс Койпера можно только дать пока один ответ — между 42 и 48 АЕ расстояниями от Земли и Солнца.

Орбита космических тел в этой области по большей части остается стабильной, хотя некоторые объекты иногда немного меняются, когда они слишком приближаются к Нептуну.

В поясе Койпера обнаружено более тысячи объектов, и теоретически предполагается, что существует до 100000 космических тел диаметром более 100км. Учитывая их малый размер и гигантское расстояние от Земли, химический состав таких объектов очень трудно определить.

Однако спектрографические исследования, проведенные в этой области Солнечной системы с момента ее открытия, в целом показали, что ее элементы состоят в основном изо льдов: смеси легких углеводородов (таких как метан), аммиака и водяного льда-композиции, которую они разделяют с кометами. Первоначальные исследования также подтвердили широкий диапазон цветов среди объектов — от нейтрального до глубокого красного.

Это говорит о том, что их поверхности состоят из широкого спектра соединений, от грязных льдов до углеводородов. В 1996 году Роберт Х. Браун получил спектроскопические данные на объект KBO 1993SC, показывающие, что состав его поверхности похож на тот, что у Плутона, а также на луну Нептуна — Тритон, имеющую большие количества метанового льда.

С 2000 года было обнаружено несколько космических тел с диаметром от 500 до 1500 км, что более чем наполовину меньше площади Плутона. 50000 Quaoar, классический астероид, открытый в 2002 году, составляет более 1200 км в поперечнике. Makemake и Haumea, объявленные, как малые планеты 29.07.2005 года. Другие объекты, такие как 28978 Ixion (обнаруженный в 2001 году) и 20000 Varuna (обнаружен в 2000 году), имеют размеры примерно пол тысячи км в поперечнике.

Будущее

Койпер, когда он изначально разрабатывал свою космологическую теорию о существовании пояса космических объектов за пределами Нептуна, указал, что такой пояс, вероятно, скоро (по космическим меркам) прекратит свое существование. Конечно, последующие открытия доказали, что это было не так. Но одна вещь, на которой настаивал Койпер, была идея о том, что эти транс-нептунианские объекты не будут вечно существовать в виде бесформенного облака.

Со временем часть из них, сталкиваясь друг с другом измельчится до состояния космической пыли, какие-то космические тела, приближаясь к Солнцу — просто растают, а более крупные, скорее всего, когда-нибудь покинут пределы Солнечной системы и устремятся в другие, более гостеприимные и далекие галактики.

Источник

Пояс Койпера

Пояс Койпера — это дискообразная область ледяных объектов за орбитой Нептуна – в миллиардах километрах от нашего Солнца. Пояс Койпера и еще более далекое Облако Оорта, как полагают, являются домом для комет, вращающихся вокруг Солнца.

Пояс Койпера

В 1992 году астроном Дэвид Джевитт обнаружил объект 1992 QB1 за пределами Солнечной системы. В течение следующих пяти лет он обнаружил еще 40 – 50 подобных объектов. К середине 2016 года число найденных объектов составило 2000. Область обнаруженных объектов получила название «Пояс Койпера». Учёные на данный момент не знают, где он заканчивается. Не знают, что происходит на наружном крае пояса Койпера и где он находится, но знают, что он очень далеко: некоторые открытые объекты пояса Койпера имеют необычные орбиты, которые в 2000 раз больше, чем расстояние между Землей и Солнцем. Несмотря на то что объектов пояса Койпера очень много, учёные обнаружили, что их масса довольно мала и равна только 10% от массы Земли или 2/3 Луны. Это было загадкой: как формируются эти тела, если у них такая маленькая масса? Эти тела растут очень медленно. Модели малой массы пояса Койпера стали горячей темой. Они были основаны на идее, что пояс Койпера был гораздо более массивным, когда начал формироваться, — в 20 или 40 раз массивнее Земли. Но большая часть массы была потеряна.

Читайте также:  С небес африканское солнце печет река под названием конго течет подходит

Предполагают, что всего в поясе Койпера имеется около 500 тысяч астероидов размером более 30 км. По площади пояс Койпера в полтора раза превышает ту часть Солнечной системы, вокруг которой он расположен, то есть ограниченную орбитой Нептуна. Более 90% новых объектов движутся по почти круговым «классическим» орбитам, расположенным на расстояниях от 30 до 50 астрономических единиц от Солнца. Поэтому очертания пояса Койпера имеют вид толстого бублика, в пределах которого движутся тысячи небольших небесных тел. На расстоянии примерно 48 а. е. от Солнца плотность пояса Койпера резко падает. Пока отсутствуют причины, объясняющие, почему пояс не может простираться дальше этого барьера Койпера. Астрономы не могут определиться с тем, действительно ли это уже край или всего лишь широкий интервал, в котором может находиться еще один существующий мир — так называемая планета X.

Крупнейшие объекты пояса Койпера

Начиная с 2000 года число объектов пояса Койпера с диаметрами от 500 до 1200 км (около половины диаметра Плутона) стало быстро возрастать. Это постепенно привело к пониманию Плутона как одного из самых крупных, но по сути рядового члена пояса Койпера.

Эрида – плутоид

Диаметр — 2330 км.
Расстояние до Солнца 14,61 млрд. км.
Ранее была известна под названием Ксена (Зена). Большой эксцентриситет орбиты у Эриды приводит к регулярным изменениям на её поверхности и даже к бегущим через всю карликовую планету газовым течениям.

Плутон – плутоид

Диаметр — 2390 км.
Расстояние до Солнца 5,9 млрд. км.
Первоначально он считался планетой, но был переклассифицирован как карликовая планета. В честь Плутона подгруппу из известных на данный момент карликовых планет, обращающихся за орбитой Нептуна, называют «плутоидами».

Макемаке – плутоид

Диаметр — 1500 км.
Расстояние до Солнца 6,9 млрд. км.
Со времени возникновения Солнечной системы ледяная планета четко следует по своему пути, не подвергаясь влиянию Нептуна.

Хаумеа – плутоид

Диаметр — 1500 км.
Расстояние до Солнца 7,7 млрд. км.
Хаумеа имеет сильно вытянутую форму. Возможно, этот «волчок» пояса Койпера родился в результате столкновения двух небесных тел.

Харон – спутник Плутона

Диаметр — 1207 км.
Расстояние до Солнца 5,9 млрд. км.
Харон — спутник Плутона. Он имеет большие размеры и всего в 2 раза меньше по диаметру своего хозяина. Ни один спутник в Солнечной системе не обладает таким размером по отношению к своей планете.

Квавар – карликовая планета

Диаметр — 1100 км.
Расстояние до Солнца 6 млрд. км.
Орбита Квавара — почти круговая. Ее эксцентриситет (мера вытянутости эллипса) меньше 0.04, что означает, что его расстояние до Солнца меняется меньше, чем на 8%. В этом он сильно отличается от Плутона, эксцентриситет которого в 6 раз больше.

Орк – карликовая планета

Диаметр — 946,3 км.
Расстояние до Солнца 5,8 млрд. км.
Орбита Орка весьма напоминает по параметрам орбиту Плутона. Интересно, что Орк всегда находится на противоположной стороне орбиты по отношению к Плутону. В связи с этим, Орк иногда называют «Анти-Плутон».

Варуна – карликовая планета

Размеры — 859 × 453 км.
Расстояние до Солнца 6,4 млрд. км.
Варуна имеет вытянутую форму. Варуна классифицируется как классический транснептуновый объект и следует по почти круговой орбите.

Иксион – карликовая планета

Диаметр — 650 км.
Расстояние до Солнца 5,9 млрд. км.
Как и Плутон, Иксион находится в орбитальном резонансе 2:3 с Нептуном (делает два оборота вокруг Солнца за то же время, которое необходимо Нептуну для трёх оборотов).

Пояс Койпера не следует путать с гипотетическим облаком Оорта, которое расположено в тысячи раз дальше. Объекты пояса Койпера, как и объекты рассеянного диска и облака Оорта, относят к транснептуновым объектам.

Источник

Adblock
detector