Меню

Приборы для измерения вселенной

Естествознание.ру

Астрономические модели и приборы

Много столетий назад ученые-астрономы использовали достаточно точные приборы для измерения космоса — определения высоты солнца и других космических объектов над горизонтом или расстояния между ними. По конструкции астрономические приборы условно можно разделить на две группы: механические и оптические. Оптические приборы оснащены увеличивающими линзами, механические приборы линз не имеют

Кубок Кеплера

Немецкий астроном и математик Иоганн Кеплер предположил, что орбиты шести планет Солнечной системы (Меркурия, Венеры, Земли, Марса, Юпитера и Сатурна) можно вписать в симметричные геометрические фигуры (шар, куб, тетраэдр и др.).

Красивая теория, с помощью которой Кеплер хотел подчеркнуть идеальность Вселенной. К сожалению, эта теория не работает, хотя модель под названием кубок Кеплера выглядит впечатляюще.

Механическая модель

Механическая модель Солнечной системы со сферой в центре, которая представляет Солнце, с планетами на концах шестов. Примерно в I в. до н. э. древнегреческий историк, географ и астроном Посидоний создал механическую модель нашей звездной системы (скорее всего — геоцентрическую модель). Она иллюстрировала взаимное расположение и движение Солнца, планет и их спутников в нашей системе — такой, какой ее знали на тот момент. Первый подобный современный механизм, уже на основе гелиоцентрической модели, был произведен в 1704 г. в Англии.

Модель солнечной системы

  • Описание: механический прибор, макет Солнечной системы, используемый не как астрономический прибор, а в познавательных целях (наглядный объект школы, университета, планетария).
  • Изобретение: примерно 1 век до н.э.
  • Размеры: от 20-30 см до 10м.

Наглядное пособие по астрономии

Картина британского живописца Джозефа Райта написана около 1766 г. и имеет длинное название «Философ, объясняющий модель Солнечной системы, в которой лампа заменяет Солнце». На полотне группа молодых аристократов изучает модель Солнечной системы на лекции по астрономии (или физике).

Модель, как правило, имеет часовой механизм (иногда спрятанный, иногда открытый). При помощи механизма вращаются планеты (в «продвинутых» моделях — со скоростями, соответствующими реальным).

Астрономический радиус

Средневековые астрономы примерно 1000 лет назад применяли поперечный жезл, или астрономический радиус. Он состоял из перекладины (1), скользящей по центральной линейке (2) длиной 70—100 см, на которую нанесена шкала. Предназначение прибора — измерение высоты небесных светил (Полярной звезды, солнца и пр.). Чтобы измерять углы в разных диапазонах величин, нужно было иметь несколько перекладин различной длины.

Как работает поперечный жезл?

Центральная линейка (3) наводится на одно небесное тело, после чего перекладину сдвигают, пока линия в поле зрения (4) не покажет на второе небесное тело. Может применяться также метод наведения на горизонт (5). Отградуированная шкала на центральном жезле показывает угол между направлениями на выбранные небесные тела.

Источник

Астрономические инструменты и приборы

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Астрономические инструменты и приборы» в других словарях:

Инструменты — получить на Академике актуальный промокод на скидку PrintBar или выгодно инструменты купить с дисконтом на распродаже в PrintBar

Астрономические инструменты — Астролябия … Википедия

Астрономические инструменты — или приборы см.: Альтазимут, Армиллярная сфера, Астрограф, Астролябия, Астрофотометр, Ауксометр, Бинокулярный телескоп, Гелиограф, Гелиометр, Гелиоскоп, Гелиостат, Гелиотроп, Гномон, Деклинограф, Квадрант, Коллиматор, Кометоискатель, Октант,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Астрономические измерительные приборы — лабораторные приборы для измерений положений изображений небесных светил на фотоснимках звёздного неба и спектр, линий на астроспектрограммах. Существуют конструкции А. и. п. (координатно измерительных машин) для измерений либо одной,… … Большая советская энциклопедия

МОРЕХОДНЫЕ ИНСТРУМЕНТЫ — инструменты, употребляемые в морском деле в целях обеспечения кораблевождения. К мореходным инструментам относятся: навигационные инструменты (см.) и астрономические инструменты (морские угломерные инструменты, хронометры и часы, вспомогательные… … Морской словарь

Читайте также:  За пределами вселенной лостфильм

Астрономический бинокль — (бинокуляр) бинокль, предназначенный для наблюдения астрономических объектов: Луны, планет и их спутников, звёзд и их скоплений, туманностей, галактик и т. д … Википедия

Астрономия — I Астрономия (греч. astronomía, от Астро. и nómos закон) наука о строении и развитии космических тел, их систем и Вселенной в целом. Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… … Большая советская энциклопедия

Астрономия — I Астрономия (греч. astronomía, от Астро. и nómos закон) наука о строении и развитии космических тел, их систем и Вселенной в целом. Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… … Большая советская энциклопедия

Экваториал — (от Экватор) линзовый или зеркальный телескоп на параллактической монтировке (см. Монтировка телескопа). Часовым механизмом телескоп вращается вокруг полярной оси со скоростью 1 оборот за 24 звёздных часа, благодаря чему наблюдаемое… … Большая советская энциклопедия

Практическая астрономия — раздел астрометрии (См. Астрометрия), посвященный учению об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. В зависимости от условий, в которых… … Большая советская энциклопедия

Параллакс Солнца — горизонтальный экваториальный параллакс Солнца, угол, под которым со среднего расстояния Солнца виден экваториальный радиус Земли. До введения в астрономическую практику радиолокационных методов определения расстояний до планет численное… … Большая советская энциклопедия

Источник

Астрономические инструменты

  • Астрономические инструменты — инструменты, которые применяются при астрономических наблюдениях. Первыми такими инструментами были гномоны, затем появились астролябии, квадранты, секстанты. В XVII веке появились первые оптические телескопы, в XX веке — радиотелескопы, рентгеновские, нейтринные и гравитационные телескопы.

Астрономические инструменты и приборы подразделяют на наблюдательные инструменты (телескопы), светоприёмную и анализирующую аппаратуру, вспомогательные приборы для наблюдений, приборы времени, лабораторные приборы, вспомогательные счётно-решающие машины и демонстрационные приборы. Оптические телескопы служат для собирания света исследуемых небесных светил и построения их изображения.

Для определений координат небесных объектов и ведения службы времени используют меридианные круги, пассажные инструменты, вертикальные круги, зенит-телескопы, призменные астролябии и другие инструменты. В астрогеодезических экспедициях применяют переносные инструменты типа пассажного инструмента, зенит-телескопы, теодолиты. Крупные солнечные телескопы, обычно устанавливаемые неподвижно, делятся на башенные телескопы и горизонтальные телескопы; свет направляется в них одним (сидеростат, гелиостат) или двумя (целостат) подвижными плоскими зеркалами. Для наблюдений солнечной короны, хромосферы, фотосферы применяют внезатменный коронограф, хромосферные телескопы и фотосферные телескопы.

Быстро движущиеся но небу искусственные спутники Земли фотографируют с помощью спутниковых фотокамер, позволяющих с высокой точностью регистрировать моменты открывания и закрывания затвора.

В древности основным прибором времени служили солнечные часы, гномоны, а затем — стенные квадранты, с помощью которых определяли моменты пересечения Солнцем или звездой плоскости меридиана. В современной астрономии для этой цели применяют пассажные инструменты с фотоэлектрической регистрацией. Наиболее точным маятниковым прибором для хранения времени являются часы Шорта, часы Федченко. Однако в настоящее время их вытесняют кварцевые и атомные часы.

Для обработки фотоснимков, получаемых в результате наблюдений, применяют лабораторные приборы: координатно-измерительные машины (для измерения положения изображений небесных светил на фотоснимке), блинк-компараторы (для сравнения между собой двух фотоснимков одного и того же участка неба, полученных в разное время), компараторы (для измерений длин волн спектральных линий на спектрограммах), микрофотометры (для измерений распределения интенсивности в спектре на спектрограмме), звёздные микрофотометры (для определений яркости звёзд по фотографиям).

Для вычислений, связанных с обработкой результатов наблюдений, применяют счётно-решающие машины. К демонстрационным приборам относятся теллурии — модели Солнечной системы, и планетарии, позволяющие на внутренней поверхности сферического купола наглядно показывать астрономические явления.

Читайте также:  Возраст нашей вселенной млрд лет укажите с точностью до целого числа нет ответа

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Зени́т-телескóп — телескоп, оптимизированный для наблюдения объектов на относительно малом отклонении от зенита. Он используется при измерении астрономической широты. Такого рода телескопы, как правило, портативны, но это необязательно; примером большого, непортативного зенит-телескопа является Монумент в память о Великом лондонском пожаре (англ. Monument to the Great Fire of London).

Источник

Астрономические инструменты и приборы

Астрономические инструменты и приборы — оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы, лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. Электромагнитное излучение небесных тел), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них — это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант — плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы — модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру.

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

В 1668 г. И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам. Позже совершенствованием этой системы телескопов занимались М. В. Ломоносов и В. Гершель. Последний добился особенно больших успехов в сооружении рефлекторов. Постепенно увеличивая диаметры изготавливаемых зеркал, В. Гершель в 1789 г. отшлифовал для своего телескопа самое большое зеркало (диаметром 122 см). В то время это был величайший в мире рефлектор.

В XX в. получили распространение зеркально-линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931 г.) и советским оптиком Д. Д. Максутовым (1941 г.).

В 1974 г. закончилось строительство отечественного зеркального телескопа с диаметром зеркала 6 м. Он установлен на Кавказе — в Специальной астрофизической обсерватории. Возможности этого инструмента огромны. Этому телескопу доступны объекты 25‑й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере (систематические наблюдения такого рода позволяют изучать движения небесных светил); для определения скорости движения небесных светил вдоль луча зрения (лучевые скорости); для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

Читайте также:  Далеко во вселенной весь сюжет

К числу астрометрических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг, используемый для составления точных каталогов положений звезд; пассажный инструмент, служащий для точных определений моментов прохождения звезд через меридиан места наблюдений, что нужно для службы времени.

Для фотографических наблюдений используются астрографы.

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.

Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники (см. Телевизионный телескоп), а также фотоэлектронных умножителей.

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры, а также инструменты, применяемые в рентгеновской астрономии, гамма-астрономии, инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Для измерения положений изображений звезд на астрофотографиях и изображений искусственных спутников относительно звезд на спутникограммах служат координатно-измерительные машины. Для измерения почернений на фотографиях небесных светил, спектрограммах служат микрофотометры.

Важный прибор, необходимый для наблюдений, — астрономические часы.

При обработке результатов астрономических наблюдений используются суперкомпьютеры.

Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30‑х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50‑е гг. XX в. — период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос — картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из‑за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являлись советские орбитальные станции «Салют». В настоящее время успешно эксплуатируется космический телескоп «Хаббл».

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.

Источник

Adblock
detector