Астрономических инструменты
С древнейших времен у человека, исследовавшего и познававшего природу, было два основных способа действия — наблюдение и эксперимент. Однако астрономы на протяжении тысячелетий не могли и мечтать об экспериментах — ведь те объекты, которые их интересовали, находились невероятно далеко и были недостижимы.
Волей-неволей исследователям Вселенной приходилось создавать и совершенствовать все новые средства «дистанционного познания» — различные инструменты, которые позволяли не просто вести наблюдение за небесным телом или явлением, но и определять расстояние, положение на небосклоне, фиксировать размеры объекта, его цвет, силу испускаемого им света и многие другие параметры. Но и этого недостаточно — для того чтобы наблюдения имели научную ценность, они должны быть обработаны и приведены в систему. Поэтому астрономия еще в древности была тесно связана с математикой и физикой, а в наши дни — с теорией относительности и квантовой механикой.
Лицом к лицу с беспредельностью
С началом космической эры астрономия впервые смогла вплотную приблизиться к предмету своей науки — космосу. Исследования околоземного пространства, ближайших тел Солнечной системы и межпланетного пространства, разных явлений за пределами Солнечной системы, поиски внеземных форм жизни — все это стало доступно с помощью пилотируемых космических кораблей, беспилотных космических аппаратов и зондов-роботов. Постоянные наблюдения за Вселенной ведут с околоземных орбит десятки научных спутников, космических телескопов и обсерваторий.
Особенно широкое распространение получили космические зонды — автоматические космические аппараты, предназначенные для прямого изучения самых далеких объектов Солнечной системы и пространства между ними. Они способны пролетать на близком расстоянии от планет, астероидов и комет, фотографировать их поверхность с близкого расстояния, брать пробы атмосферы и грунта, измерять электромагнитные поля, вести сейсмические исследования.
За несколько тысячелетий был пройден путь от простейших угломерных инструментов до космических телескопов и приборов, способных на Земле уловить излучение от спички, зажженной на Луне. Современные астрономы научились наблюдать процессы, происходящие на расстоянии нескольких миллиардов световых лет от Солнечной системы, в недрах звезд и галактик.
«Глаза земли»
Современные оптические телескопы и другие приборы на их основе — спектрографы, солнечные телескопы, астрографы — изменились до неузнаваемости по сравнению с инструментами Галилея и Ньютона.
Зеркальные телескопы нового поколения имеют главные зеркала диаметром 8—10 м и способны самостоятельно устранять помехи, возникающие в атмосфере. Рекордсмены среди этих гигантов по разрешающей способности — 10 метровые телескопы Кек I и Кек II (США), 9,2-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини и Субару, телескоп VLT Европейской южной обсерватории, а также находящийся в стадии постройки Большой бинокулярный телескоп LBT в штате Аризона (США).
С помощью современных радиотелескопов можно принимать большинство видов космических излучений, которые возникают в результате различных процессов, происходящих в веществе Вселенной при определенных условиях. Многие из них можно использовать не только в качестве «приемников», но и «передатчиков» мощных сигналов. Посылая импульсы излучения, телескоп улавливает их отражение от небесных тел, что позволяет получать изображения поверхности планет, скрытых плотной атмосферой, и изучать глубины таких «газовых гигантов», как Сатурн и Юпитер. Антенны радиотелескопов используются также для осуществления связи с космическими аппаратами, отправленными в странствия к границам Солнечной системы. С помощью радиотелескопов были открыты такие неизвестные в недалеком прошлом объекты, как нейтронные звезды, квазары, реликтовое излучение Вселенной.
Еще более необычные инструменты познания — инфракрасные, ультрафиолетовые, рентгеновские и гамма-телескопы — настолько чувствительны и сложны, что просто не могут работать в земных условиях. Чтобы защитить их от «земных помех» и получить новую важную информацию о глубинах мироздания, эти приборы устанавливают на борту орбитальных астрономических обсерваторий-автоматов.
Крупнейшие астрономические обсерватории мира соревнуются между собой, создавая все более крупные инструменты и наращивая размеры их зеркал. Современный телескоп-рефлектор занимает целое здание, им управляет множество компьютеров. Самый мощный телескоп в Евразии построен в России — он находится на Северном Кавказе близ станицы Зеленчукской. Диаметр его главного зеркала — 6 м. Зеркало имеет массу около 70 т, а процесс его изготовления занял более двух лет. Но «королем» всех астрономических инструментов, расположенных на Земле, сегодня является Большой Канарский телескоп, построенный на Канарских островах по проекту ученых Мексики, Испании и США. Его зеркало имеет диаметр 10,4 м, он способен различать в межзвездном пространстве объекты в миллиард раз более слабые, чем человеческий глаз.
Измеряем космос
Для изучения и измерения космоса человек давно придумал мощнейшие телескопы, некоторые из них он даже вывел в космос, чтобы быть ближе к изучаемым объектам. Однако для измерения космоса у людей есть намного более простые «приборы», которые всегда с собой, — это наши руки. Стоящий в любой точке планеты человек может представить небо в виде сферы с окружностью размером 360 градусов, центром которой является он сам. Если полностью вытянуть руку и расположить пальцы определенным образом, можно измерить в градусах угловое расстояние между двумя небесными объектами: планетами, звездами и пр.
Конечно, измерение руками весьма приблизительно. И вообще, градусы — довольно большая величина для небесных тел. Говоря об их размерах и расстояниях между ними, часто используют минуты и секунды. В одном градусе — 60 минут, а в одной минуте — 60 секунд. К примеру, диаметры самых больших видимых с Земли космических объектов — Луны и Солнца — составляют по половине градуса (30 минут), а диаметр планеты Венера — всего 1 минуту.
Астролябия
Такое название носит один из старейших астрономических инструментов. Его основой служит «тарелка» с подвесным кольцом. Также имеется ось с двумя диоптрическими отверстиями. Установив центральную линию автролябии на уровне горизонта и «прицелившись» через диоптрические отверстия на выбранный объект (Луну, Солнце и др.), можно определить собственные координаты.
Высота над горизонтом
Секстант (от латинского — «шестой») — измерительный инструмент, с помощью которого определяют высоту космических тел над горизонтом. Через подзорную трубу «ловится» линия горизонта. Потом рычаг регулируется до тех пор, пока в эту трубу не «ловится» через систему линз изображение Солнца. Тем самым мы установим рычаг в определенном положении на дугообразной шкале. Цифра этой шкалы, на которой установился рычаг, будет использоваться в дальнейшем для вычисления координат.
Источник
Межпланетные космические аппараты
Межпланетные космические аппараты – это разработки, используемые человечеством для исследования планет, пространства Солнечной системы с выходом за пределы орбиты Земли. Такие корабли появились достаточно давно, по сей день применяются для изучения вселенной. Единственное отличие – в конструктивных особенностях и возможностях. Современные космические аппараты принципиально отличаются от своих давних аналогов, открывают перед исследователями больше возможностей. Безусловно, все корабли, которые когда-либо запускали в космос, рассматривать долго. Поэтому остановимся на самых известных разработках человечества.
МКС – международная космическая станция
МКС или международная космическая станция – пилотируемый многоцелевой исследовательский комплекс. Впервые его запустили в космос в 1998 году, применяют до сегодняшнего дня. МКС является совместным проектом ряда государств. Всего их 14, поэтому отметим только часть стран:
Страны заключили соглашение о совместной эксплуатации МКС до 2024 года. Всего в составе станции предусмотрено 15 основных модулей, производителями которых являются Россия, Америка, Япония, европейские государства. Можно только представить, насколько огромным и многофункциональным получился корабль. Данный космический аппарат – это огромный комплекс, с помощью которого удается проводить информативные и точные исследования.
Межпланетная транспортная система от компании SpaceX
Пока это только проект. SpaceX трудится над созданием многоразового космического летательного аппарата, с помощью которого удавалось бы доставлять людей на Марс. Комплекс предположительно будет иметь следующие составляющие:
- ракета-носитель для запуска с Земли;
- межпланетный корабль со всеми приборами, доставляющий людей и грузы;
- танкерная модификация для дозаправки на орбите.
Первый полет, предположительно, должен состояться в 2022 году. Во время его проведения на Марс планируют доставлять груз. С экипажем система может полететь в 2024 г.
Продолжая говорить про межпланетные космические аппараты, используемые для исследования планет, отметим, что осенью 2019 компания SpaceX презентовала вниманию публики прототип ракеты Starship. Презентация прошла в Техасе в конце сентября. Starship, как запланировано, сможет транспортировать около сотни пассажиров, доставив их на Марс или на Луну. Руководитель проекта пока называет только предположительную дату полета, указывая, что это событие может состояться уже весной 2020.
Первый космический аппарат
Если говорить про первый аппарат, то это поднявший в космос известного космонавта Юрия Гагарина в 1961 году корабль под названием «Восток-1». Именно на этом агрегате был совершен первый в мире полет за пределы Земли. Данное событие стало гордостью для СССР, и о нем быстро узнали в разных странах мира.
Аппараты для изучения космоса
Рассмотрим ряд агрегатов, которые человечество использовало для изучения объектов Солнечной системы:
- Пионер 5-9 моделей – исследовал Солнце и окружающее пространство;
- Маринер-10, Маринер-2, Венера 4-16 моделей и Мессенджер – использовались для изучения Меркурия и Венеры;
- Луна 24, Хитэн, Клементина – модификации, исследовавшие Луну;
- Спирит, Феникс – летали на Марс.
Это автоматические устройства для исследования объектов космоса. В списке представлена лишь малая часть агрегатов в качестве примера.
Источник
Методы и приборы для изучения вселенной
Автор: Пользователь скрыл имя, 12 Сентября 2011 в 12:43, реферат
Описание работы
Астрономия является одной из древнейших наук. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.
Содержание
ВВЕДЕНИЕ 3
I ИСТОРИЯ ИЗУЧЕНИЯ ВСЕЛЕННОЙ 4 – 16
II МЕТОДЫ ИЗУЧЕНИЯ 17 – 19
III ПРИБОРЫ ДЛЯ ИЗУЧЕНИЯ ВСЕЛЕННОЙ 20 –
§1. Наземные 20 – 24
§2. Космические 25 – 27
§3. Что такое о БАК? 28 – 31
IV ЗАКЛЮЧЕНИЕ 32
V СПИСОК ЛИТЕРАТУРЫ 33
VI ПРИЛОЖЕНИЯ 34 – 37
Работа содержит 1 файл
МОЙ РЕФЕРАТ по К.С.Е..docx
В научном мире, среди учёных существует точка зрения, что Вселенная никогда не возникала, а существовала вечно и будет существовать вечно, изменяясь лишь в своих формах и проявлениях.
Многие полагают, что уже на самых ранних стадиях эволюции Вселенной существовали незначительные отклонения от однородности и изотропии, которые привели в конце концов к образованию наблюдаемой сейчас пространственной структуры в виде галактик и их скоплений:
со второй половины 20 столетия начинается эра космических исследований .Подтвердились теории о распределении вещества во Вселенной (в Метагалактике), 95 % которого приходится на «таинственные» темные энергию и темную материю. Создаются новые теории(струнная, петлевая и М-теория) и основанные на них модели Вселенной – бесконечной в пространстве и времени.
Построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.
Эти и ряд других открытий создали базу для новых ,в том числе интуитивных, идей о строении и свойствах Вселенной – такой какая она есть, была и будет вечно,основе всего сущего, в том числе звездно- планетарных миров, эволюционирующих и преходящих.
Наука, изучающая мегамир, называется астрономией. Астрономия – составная часть естествознания. Она является самой древней из естественных наук. Из потребностей астрономии возникла математика. Астрономия стимулировала появление физики. Так, астроном Г.Галилей является основоположником механики. С другой стороны в XIX веке физические методы исследования проникли в астрономию, и возникла симбиотическая наука – астрофизика, которая изучает физические свойства космических тел. В настоящее время Вселенную изучают представители разных наук.
Самым общим понятием, охватывающим весь материальный мир, является понятие «Вселенная». Наблюдаемая область Вселенной называется Метагалактикой
В настоящее время радиус Метагалактики равен 10 миллиардов световых лет, то есть расстоянию, которое электромагнитные волны проходят за 10 миллиардов лет (скорость света 300000 км/с).
Основные сведения о мегамире могут быть получены двумя путями: экспериментальным и теоретическим.
Последний подход не является полностью независимым, так как любая теоретическая модель опирается на экспериментальные факты, а вот для ее исследования используют более подробный математический аппарат. Экспериментальное изучение космических объектов и всего мирового пространства базируется также на двух основах: непосредственное исследование свойств объектов при помощи лабораторного оборудования и наблюдение объекта, то есть исследование его электромагнитного излучения. Контактное (лабораторное) исследование вещества космических тел не является чем-то исключительным. В лабораториях Земли исследовались горные породы с Луны, доставленные пилотируемыми аппаратами «Аполлон» и автоматическими станциями «Луна-16» и «Луна-20», многочисленные метеориты, по современным воззрениям являющиеся обломками астероидов. Контактное изучение при помощи соответствующей аппаратуры проводились на поверхностях Луны, Венеры, Марса. Многочисленные искусственные научные спутники и автоматические межпланетные станции непосредственно изучали при помощи приборов физические свойства околоземного и межпланетного пространства. Этот метод исследования будет расширяться, ему будут доступны для изучения другие планеты Солнечной системы и многочисленные спутники этих планет.
основной метод исследования объектов мегамира – изучение их электромагнитного излучения. Это обусловлено тем, что контактное исследование неприменимо для раскаленных объектов (звезд). К тому же объекты, более удаленные от Земли, чем тела Солнечной системы, очевидно, останутся и в настоящем и в будущем недоступными для контактного исследования.
Изучение Вселенной началось и продолжается в течение нескольких тысячелетий; вплоть до середины XX века, это происходило почти исключительно оптическими методами.
Первые астрономические научные наблюдения являлись астрометрическими; изучалось только расположение светил и их видимое движение на небесной сфере.
Такие наблюдения с использованием угломерных инструментов позволили сформулировать первые научные модели мира – Птолемея и Коперника. Сейчас астрономы научились определять расстояния, как до тел Солнечной системы, так и более удаленных объектов: звезд и галактик. Тем самым удалось представить геометрическую структуру мира.
Оптические наблюдения и в настоящее время не потеряли своего значения.
Так, радиоволны принесли информацию об активных галактиках, о строении ядер галактик, в том числе и нашей Галактики, тогда как оптическое излучение от центра Галактики полностью задерживается космической пылью.
Наблюдения в других спектральных диапазонах позволили сделать важные открытия. Наблюдения в рентгеновском и g-диапазонах позволяли исследовать космические объекты на поздних стадиях их жизни (пульсары, черные дыры и т.д.).
Приборы для собирания и исследования космического электромагнитного излучения называются телескопами. Главной частью телескопа является объектив, который воспринимает поток излучения. Данная физическая величина прямо пропорциональна квадрату диаметра объектива телескопа и, следовательно, во много раз больше потока регистрируемого человеческим глазом. В зависимости от диапазона регистрируемого космического излучения телескопы могут быть оптическими, радиотелескопами, рентгеновскими, g-телескопами и т.д.
Первым астрономическим инструментом можно считать вертикальный шест, закрепленный на горизонтальной площадке, – гномон, позволявший определять высоту Солнца, многих столетий. Зная длину гномона и тени, можно определить не только высоту Солнца над горизонтом, но и направление меридиана, устанавливать дни наступления весеннего и осеннего равноденствий и зимнего и летнего солнцестояний.
К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант – плоская доска в форме четверти круга, разделенного на градусы. Около центра этого круга вращается подвижная линейка с двумя диоптрами.
Широкое распространение в древней астрономии получили армиллярные сферы – модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т.
Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.
Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения
Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом. Избавиться от недостатков пытались, увеличивая длину телескопов. Так появились огромные инструменты, вроде того, который в 1664 г. был построен во Франции А. Озу. Этот телескоп имел длину 98 м и в этом отношении остался чемпионом и доныне. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться в середине 18 века Д. Доллондом в Англии. В 1668 г.И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам.
Позже совершенствованием этой системы телескопов занимались М.В. Ломоносов и В. Гершель.
В XX в. получили распространение зеркально- линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и советским оптиком Д.Д. Максутовым (1941).
В 1974 г. закончилось строительство самого большого в мире советского зеркального телескопа с диаметром зеркала 6 м.
Этот телескоп установлен на Кавказе в Специальной астрофизической обсерватории. Возможности этого инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т.е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.
К числу астрономических инструментов относятся универсальный инструмент – теодолит; меридианный круг, используемый для составления точных каталогов положений звезд;
Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и Вингерферометры, а также инструменты, применяемые в рентгеновской астрономии, гаммастрономии, инфракрасной астрономии.
Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.
Для фотографических наблюдений используются астрографы. Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.
Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники – телевизионного телескопа, а также фотоэлектронных умножителей.
Важный прибор, необходимый для наблюдений – астрономические часы.
В настоящее время применяются три основных типа оптических телескопов: линзовые телескопы, или рефракторы, зеркальные телескопы, или рефлекторы, и смешанные, зеркально-линзовые системы. Мощность телескопа непосредственно зависит от геометрических размеров его объектива или зеркала, собирающего свет. Поэтому в последнее время все большее применение получают телескопы-рефлекторы, так как по техническим условиям возможно изготовление зеркал значительно больших диаметров, чем оптических линз.
Современная техника позволила создать целый ряд приспособлений и устройств, намного расширивших возможности астрономических наблюдений: телевизионные телескопы дают возможность получать на экране четкие изображения планет, электронно-оптические преобразователи позволяют вести наблюдения в невидимых инфракрасных лучах, в телескопах с автоматической корректировкой компенсируется влияние атмосферных помех. В последние годы все более широкое распространение получают новые приемники космического излучения – радиотелескопы, позволяющие заглянуть в недра Вселенной намного дальше, чем самые мощные оптические системы.
Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30-х гг. нашего столетия.
Существует также целый ряд астрономических инструментов, имеющих специфическое назначение и применяемых для определенных исследований. К числу подобных инструментов относится, например, солнечный башенный телескоп, построенный советскими учеными и установленный в Крымской астрофизической обсерватории.
Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах. Как правило, такие места находят в горах. Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (не более чем в несколько сотен раз). Из-за поглощения земной атмосферой ультрафиолетовых и большей части длинных волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений. На вершинах гор воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные.
Источник