Теория расширения Вселенной и законы Хаббла
Об американском астрономе Эдвине Хаббле (1889—1953) слышали абсолютно все: его именем назван телескоп, летающий в космосе и передающий прямо оттуда фото разнообразных космических объектов и разноцветных причудливых туманностей. Однако мало кому известно, почему телескоп получил фамилию именно этого ученого, а ведь Хаббл и был тем кто открыт другие галактики (помимо нашего Млечного Пути) и высказал догадку о расширении Вселенной.
В начале 1920-х Хаббл работал в калифорнийской обсерватории Маунт-Вильсон расположенной почти на двухкилометровом возвышении и оборудованной мощным телескопом с 2.5-метровым зеркальным объективом. Разглядывая три разные туманности — Андромеды. Треугольника и Барнарда — молодой ученый высмотрел там отдельные звездочки и пришел к ошеломительному заключению: эти облака — не просто аморфные скопления газа и пыли, а целые галактики, подобные Млечному Пути! Ориентируясь на звезды, систематически меняющие яркость. Хаббл сумел определить расстояние до найденных галактик и заключить что они больше Млечного Пути. Данное открытие сразу же принесло Хабблу известность и уважение в научных кругах, а потом он сделал еще одно— и прославился на весь мир. Речь идет о законе, также названном в его честь — законе красного смешения.
В 1914 г. соотечественник Хаббла, Весто Слайфер, обнаружил, что в спектрах излучений галактик часто происходят сдвиги темных полос, демонстрирующих поглощение той или иной электромагнитной волны какими-либо химическими элементами. Сдвиг в сторону красных волн получил название красного смещения, а сдвиг в фиолетовую сторону был назван синим смещением. Слайфер определил степень смешения для разных галактик, а Хаббл вычислил расстояния до них и сравнил свои данные с данными коллеги. Все говорило о том что смешение напрямую зависит от отдаленности галактики: чем дальше она от Земли, тем больше черных линий концентрируется в красном поле спектра.
Вместе с тем Хаббл предположил, что с расстоянием скорость отдаления галактик повышается, а значит, линии в спектре должны смещаться еще больше. Ученый даже нашел формулу для вычисления скорости «убегания»: нужно умножить расстояние до галактики и дистанцию, на которую за секунду разойдутся две галактики, оказавшиеся за парсек (3×1019 км) одна от другой. (Вторая величина была названа постоянной Хаббла.)
Правда, сам ученый рассчитал эту постоянную неверно (у него вышло 500 км с Мпк, тогда как в действительности данный показатель равен всего 70). поскольку не учел важный момент: галактики двигаются не только в направлении расширяющейся Вселенной — не только убегают одна от другой, но и притягиваются силами гравитации. И смещение в их спектре складывается из этих двух смещений. Если галактики находятся относительно близко одна к другой, сила притяжения между ними перевешивает силу отталкивания, и соседки движутся навстречу — линии в их спектре сдвигаются в фиолетовую сторону. Между тем. если бы мы применили к ним формулу Хаббла, то вышло бы, что галактики отдаляются. А отдаляться они могут лишь при условии достаточно больших расстояний между ними, на которых гравитация значительно слабее сил расширения. Если принимать это во внимание, закон Хаббла вполне справедлив.
Как только Хаббл поделился своими мыслями с коллегами, один из них. Милтон Хьюмасон принялся исследовать известные туманности, открывая одну галактику за другой. Труд калифорнийских ученых был оценен по достоинству, хотя далеко не все осознавали его истинное значение. По сути ведь закон Хаббла доказывал теорию Большого взрыва, которую разработали бельгиец Жорж Леметр и россиянин Александр Фридман, и отображал свойство пространства двигаться и расширяться. (К слову, еще Атьберт Эйнштейн в рамках своей теории относительности высказал догадку о расширении и сжатии Вселенной, однако радикальность этой идеи напугала ученого, и он ввел искусственную константу, которая в расчетах сделала пространство статичным.) С помощью закона Хаббла астрофизики и поныне вычисляют длину пути до разных галактик, и на его основе было открыто космологическое красное смещение.
К 40-м годам XX в. ученые уже выяснили, что во Вселенной постоянно происходит распад и синтез атомных ядер, в ходе чего одни элементы превращаются в другие и выделяют мощные потоки энергии. Также астрофизикам было известно, что вещество, из которого состоят звезды и межзвездная среда, содержит Уз водорода и Уз гелия и что ядра «построены» из нейтронов и протонов. На основе этих знаний были придуманы две версии развития Вселенной, различающиеся исходной пропорцией элементов межзвездного вещества и его температурой. Объединяла же обе версии идея равновесия: якобы все элементы вещества постепенно подстроились одно к другому так чтобы испускать и принимать одинаковое количество энергии, благодаря чему температура всех частиц выровнялась и обеспечила излучению стабильную плотность.
Еще в 1930-х родилась гипотеза холодной Веселенной: авторы данной версии полагали, будто сразу после рождения космическое пространство состояло из холодных частиц — нейтронов. Это. однако, не совпадало с опытными данными: свободные нейтроны очень быстро трансформируются в антинейтрино, электроны и протоны: последние, сталкиваясь с выжившими нейтронами, превращаются в разновидность водорода — дейтерий, а тот соединяется с собратом тритием и образует гелий. Но дальше процесс не идет, следовательно, если бы эта версия была верна, то вся Вселенная оказалась бы сплошь заполнена гелием. Нужно было придумать что-то другое, и ученые выдвинули противоположную гипотезу— горячей Вселенной. Тут уже слияние атомных ядер происходило в горячем веществе, правда, благодаря Хабблу Вселенная считалась ровесницей Солнечной системы, потому на подготовку исходного материала ученые не выделили времени. И то. что вся материя сформировалась в первые же секунды существования Вселенной, приняли как факт.
Уже в 40-х. осознав масштабы космоса, астрофизики «состарили» Вселенную по меньшей мере втрое, а такой почтенный возраст предполагал размеренный процесс «сборки» разных химических элементов внутри и на поверхности звезд. Однако гелия в космическом пространстве ровно треть, а это больше, чем могут произвести светила. Откуда же он взялся? В 1948 г. на этот вопрос попытался ответить русский физик Георгий Гамов с коллегами Робертом Херманом и Ральфом Альфером. Согласно их теории, в первую же долю секунды после рождения Вселенной ее вещество, состоявшее из разрозненных частиц и раскаленное до 30 лорд градусов, беспрерывно излучало фотоны (порции энергии). Благодаря очень высокой плотности они сталкивались и создавали пары заряженных частиц, те при столкновениях образовывали нейтральные частицы и выпускали опять-таки фотоны, а протоны и нейтроны при стычках с фотонами «менялись телами». Создавать цельные ядра они не могли, поскольку выплески энергии попросту разбивали бы их. Но по мере расширения Вселенной ее температура падала, частицы вели себя спокойнее, и протоны с нейтронами получали возможность объединяться в дейтерий, а из него уже образовывался гелий. Минут за пять синтезировалась та самая треть гелия, а все остальное пространство занял водород, построенный незадействованными протонами. Вселенная продолжила остывать, но на память ей осталась часть первородного горячего излучения.
Позже был представлен еще один вариант «холодной» теории, предусматривавший на старте холодную смесь электронов, протонов и нейтрино, образовавших водород, который уже в составе звезд превратился в гелий. Чтобы выяснить, какова из представленных версий ближе всего к истине, астрофизикам следовало поискать предсказанное Гамовым первородное (реликтовое) излучение. И в 1960-х его нашли, причем абсолютно случайно!
Источник
Почему вселенная расширяется? И как долго?
Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.
Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.
Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.
На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.
Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.
Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.
Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).
Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».
Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.
Теория большого взрыва и эволюция вселенной
Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.
Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.
Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.
Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.
В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.
Космическое микроволновое фоновое излучение
Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.
Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.
Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».
Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.
Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.
Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.
Темная энергия и конечная судьба Вселенной
На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.
Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.
Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.
В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!
Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.
Тем не менее похоже, что Эйнштейн не так сильно ошибался.
Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.
В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.
Источник