Откуда все золото мира? Из космоса!
Возможно, мы любим золото еще и потому, что атомы нашего тела и золото возникли вместе в термоядерном пламени звезд
Фото: Khaled al-Hariri / Reuters
Золото – дитя столкновений звезд. Подтверждение этой гипотезы нашли ученые из Гарвард-Смитсоновского центра астрофизики в Кембридже под руководством Эдо Бергера, когда проанализировали результаты зафиксированного гамма-всплеска на расстоянии около 4 миллиардов световых лет от Земли. Гамма-всплеск был связан со столкновением двух нейтронных звезд и последовавшим взрывом. Именно этот супервзрыв породил золото массой в несколько наших Лун, а также другие тяжелые металлы.
Называть стоимость этого золота в наших денежных единицах бессмысленно – 10 октальонов долларов просто невозможно представить. Но становится понятно – где находится место, которое насыщает нашу Вселенную золотом.
Как рождаются элементы
Сейчас науке доподлинно известно, как проистекает большинство термоядерных реакций в недрах звезд. Самая простая реакция – это слияние ядер водорода в ядро гелия. Когда начнет «гореть» гелий, то может появиться углерод, а когда и он «загорится» в термоядерном пламени, то будут образовываться ядра магния, натрия, кислорода, алюминия, кремния. Когда «загорится» кремний, можно будет сказать, что топливо для термоядерного «костра» заканчивается, – так как превращение кремния в серу и аргон – последние реакции, которые выделяют тепло. Последующая цепочка перерождений элементов уже его поглощает – и связано это уже с появлением железа.
Спектральные линии основных элементов Солнца. Спектр, огрубленный в целях наглядности, – в реальности линий много больше, и одна из них относится к золоту
В жизни многих звезд наступает момент (наступит он и у Солнца), когда водород в их центральной части заканчивается. Звезда начинает распухать и превращается в красного гиганта. И вот во внешних оболочках таких звезд легкие элементы начинают захватывать нейтроны, идущие из недр звезды, и образовывать ядра все более тяжелых элементов. Эти элементы выносятся со звездным ветром в окружающую среду .
Но, к сожалению, астрофизики не могли до сих пор объяснить, откуда все же берется золото во Вселенной в существующих количествах, хотя и понимали, какие условия нужны для его «производства». Мало того: более 70 лет назад физики уже попытались его сделать, по сути, моделируя звездный процесс в лабораторных условиях.
Алхимики XX века
Золото нейтронных звезд
Нейтронные звезды – уникальные объекты, которые образуются в финальной стадии существования массивных звезд. Описать их крайне трудно – это шары из нейтронов, окруженные корой ядер тяжелых элементов. Плотность нейтронного вещества невообразимая – что-то около 280 миллионов тонн в кубическом сантиметре! Вся масса Солнца умещается в шаре диаметром 15–20 километров. Урони наперсток такого вещества на землю – и он проколет ее до ядра.
Именно столкновение таких монстров создавало идеальные условия для образования тяжелых металлов, в частности золота. Эту идею предложил еще в 1970-х годах Джеймс Латтимер, в то время, когда научное сообщество полагало, что тяжелые элементы образуются во время коллапса массивных звезд. Однако у Латтимера в то время не было технических возможностей подтвердить свою точку зрения. Да и сейчас он с осторожностью относится к интерпретациям Бергера, полагая, что нужны новые, дополнительные научные миссии и наблюдения, которые и должны подтвердить его теорию, хотя это скорее традиционная скептическая позиция настоящего ученого, опасающегося случайных совпадений и ищущего доказательств.
Так художники изображают столкновение нейтронных звезд
Если же гипотеза Латтимера верна, то становится понятным и появление золота на нашей планете. Аномально высокое содержание тяжелых металлов в Солнечной системе наводит на мысль, что сама она образовалась из газопылевой туманности, оставшейся после взрыва сверхновой звезды, одной или даже нескольких, или какого-либо подобного катаклизма. Вот эти тяжелые элементы и создали пояс каменных планет от Меркурия до Марса, астероиды и метеориты. Здесь мы уходим из сферы астрофизики и переходим в зону ответственности планетологии.
Золотой дождь
Ответ на этот вопрос нашли специалисты Бристольского университета под руководством Маттиаса Виллболда. Сначала они нашли самую древнюю земную кору на планете в Гренландии, где находится геологическая формация Исуа. Этой формации, по мнению ученых, около 3,8 миллиарда лет, это фрагмент древнейшей земной коры, образовавшейся на остывающей планете. Здесь были взяты образцы для определения содержания в них тяжелых элементов.
Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии. Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.
Но я хочу обратить ваше внимание на другой факт. Мы все состоим из углерода, кислорода, железа и других сложных элементов, которые образовались в недрах горящих и взрывающихся звезд. И золото – наш брат по звезде-матери. Может, поэтому мы его так любим?
Источник
Рождение золота
Пять причин, из-за которых открытие гравитационных волн от нейтронных звезд так важно для науки
В понедельник, 16 октября, гравитационно-волновая обсерватория LIGO и целый ряд других крупных международных научных групп сообщили о чрезвычайно важном для современной астрономии открытии. Более 70 обсерваторий, работающих во всех диапазонах электромагнитного спектра, а также все три действующие гравитационно-волновые обсерватории впервые зафиксировали во всех подробностях слияние двух нейтронных звезд. В этом материале мы расскажем, что же именно наблюдали астрономы и на какие вопросы о нашей Вселенной помогает ответить новое исследование.
Как все произошло?
17 августа 2017 года, в 15:41:04 по московскому времени детектор обсерватории LIGO в Хенфорде (Вашингтон) услышал рекордно длинную гравитационную волну — сигнал продолжался около ста секунд. Это очень большой промежуток времени — для сравнения, предыдущие четыре фиксации гравитационных волн длились не дольше трех секунд. Сработала автоматическая программа оповещения. Астрономы проверили данные: оказалось, что второй детектор LIGO (в Луизиане) тоже зафиксировал волну, но автоматический триггер не сработал из-за краткосрочных шумов.
На 1,7 секунды позже детектора в Хенфорде, независимо от него, сработала автоматическая система телескопов «Ферми» и «Интеграл» — космических гамма-обсерваторий, наблюдающих одни из самых высокоэнергетических событий во Вселенной. Приборы обнаружили яркую вспышку и примерно определили ее координаты. В отличие от гравитационного сигнала, вспышка длилась всего две секунды. Интересно, что российско-европейский «Интеграл» заметил гамма-всплеск «боковым зрением» — «защитными кристаллами» основного детектора. Тем не менее, это не помешало триангуляции сигнала.
Примерно через час LIGO разослал сведения о возможных координатах источника гравитационных волн в обсерватории по всему миру — установить эту область удалось благодаря тому, что сигнал не был зарегистрирован европейским гравитационным детектором Virgo. По задержкам, с которыми детекторы начали получать сигнал, стало ясно, что, вероятнее всего, источник находится в южном полушарии. Изначальная область, рекомендуемая для поиска, достигала 28 квадратных градусов, что эквивалентно сотням площадей Луны.
Следующим этапом было объединение данных гамма- и гравитационных обсерваторий воедино и поиск точного источника излучения. Так как ни гамма-телескопы, ни тем более гравитационные не позволяли найти требуемую точку с большой точностью, физики инициировали сразу несколько оптических поисков. Один из них — с помощью роботизированной системы телескопов «МАСТЕР», разработанной в ГАИШ МГУ.
Обнаружить среди тысяч возможных кандидатов нужную вспышку удалось чилийскому метровому телескопу Swope — почти через 11 часов после гравитационных волн. Астрономы зафиксировали новую светящуюся точку в галактике NGC 4993 в созвездии Гидры, ее яркость не превышала 17 звездной величины. Такой объект вполне доступен для наблюдения в полупрофессиональные телескопы.
В течение примерно часа после этого, независимо от Swope, источник нашли еще четыре обсерватории, в том числе аргентинский телескоп сети «МАСТЕР». После этого началась масштабная наблюдательная кампания, к которой присоединились телескопы Южной европейской обсерватории, «Хаббл», «Чандра», массив радиотелескопов VLA и множество других приборов — в сумме более 70 групп ученых наблюдали за развитием событий. Через девять дней астрономам удалось получить изображение в рентгеновском диапазоне, а через 16 дней — в радиочастотном. К сожалению, через некоторое время Солнце приблизилось к галактике и в сентябре наблюдения стали невозможными.
Что стало причиной взрыва?
Такая характерная картина взрыва во многих электромагнитных диапазонах была предсказана и описана уже давно. Она соответствует столкновению двух нейтронных звезд — ультракомпактных объектов, состоящих из нейтронной материи.
По словам ученых, масса нейтронных звезд составляла 1,1 и 1,6 массы Солнца (сравнительно точно определена суммарная масса — около 2,7 массы Солнца). Первые гравитационные волны возникли, когда расстояние между объектами составляло 300 километров.
Большой неожиданностью стало небольшое расстояние от этой системы до Земли — около 130 миллионов световых лет. Для сравнения, это всего в 50 раз дальше, чем от Земли до Туманности Андромеды, и почти на порядок меньше, чем расстояние от нашей планеты до черных дыр, столкновение которых фиксировали ранее LIGO и Virgo. Кроме того, столкновение стало самым близким к Земле источником короткого гамма-всплеска.
Что такое нейтронные звезды
Нейтронные звезды образуются при коллапсе гигантов и сверхгигантов с массами в 10–25 масс Солнца. Их рождение начинается так: на каком-то этапе масса ядра звезды превышает предел Чандрасекара — 1,4 солнечной массы. В этот момент нарушается равновесие между гравитацией ядра, притягивающей внешнюю оболочку звезды, и давлением электронов, препятствующим сжатию. Звезда начинает сжиматься — коллапсировать. Плотность и температура вещества в ядре резко увеличиваются, начинается захват электронов протонами и образование нейтронов (с выбросом нейтрино). Через некоторое время ядро уже практически полностью состоит из нейтронов.
Выбросы энергии от протон-электронных слияний разрывают оболочку звезды и уносят ее материал — происходит взрыв сверхновой. Все, что остается в результате — плотное нейтронное ядро с тонкой оболочкой. Плотность нейтронной звезды огромна — она определяется лишь давлением вырожденных нейтронов и достигает 4–6×10 17 килограмм на кубический метр. Одна капля нейтронной материи (0,030 миллилитра) весит больше десяти миллионов тонн — как сотни полностью загруженных товарных поездов. При этом характерные размеры нейтронных звезд невелики — около 10 километров в диаметре, такую звезду можно поместить внутрь Третьего транспортного кольца Москвы.
Кроме огромной плотности, нейтронные звезды обладают мощными магнитными полями, с индукцией от тысяч до триллионов тесла. Для сравнения, магнитное поле Земли не превышает 0,065 тесла. Часть нейтронных звезд приобретают в результате взрыва большой угловой момент — так возникают пульсары.
На сегодняшний день нет единой картины того, как устроена нейтронная материя, не построено уравнение ее состояния. «Нейтронию» приписываются такие свойства, как сверхпроводимость и сверхтекучесть.
Двойные нейтронные звезды известны с 1974 года — одну из таких систем открыли нобелевские лауреаты Рассел Халс и Джозеф Тейлор. Однако до сих пор все известные двойные нейтронные звезды находились в нашей Галактике, а стабильность их орбит была достаточной, чтобы они не столкнулись в течение ближайших миллионов лет. Новая пара звезд сблизилась настолько, что началось взаимодействие и стал развиваться процесс переноса вещества
Событие получило название килоновой. Дословно это означает, что яркость вспышки была примерно в тысячу раз мощнее, чем типичные вспышки новых звезд — двойных систем, в которых компактный компаньон перетягивает на себя материю.
Источник
Гравитационные волны раскрыли происхождение золота во Вселенной
Основным источником формирования золота и платины во Вселенной являются слияния нейтронных звезд. Эти предположения, впервые высказанные в конце 1980-х, были подтверждены при изучении гравитационных волн, зафиксированных после слияния нейтронных звезд, которое произошло в августе.
Фото: LIGO / Sonoma State University / A. Simonnet
Об обнаружении гравитационных волн, вызванных слиянием нейтронных звезд, было объявлено 16 октября. Звезды, масса которых примерно в полтора раза превышала солнечную, находились на расстоянии около 130 млн световых лет от Земли в галактике NGC 4993 в созвездии Гидры.
«Когда мы получили первые данные по свечению этого объекта, мы поняли, что мы наблюдаем за так называемой “килоновой” звездой – экзотическим объектом, чей свет возникает в ходе чрезвычайно мощных термоядерных реакций. Это открытие указывает на то, что все тяжелые элементы, такие как золото или платина, являются “золой” подобных процессов, происходящих в останках бывших нейтронных звезд, разогретых до миллиардов градусов Кельвина», – заявил астрофизик из британского университета Уорика Джо Лайман.
Науке давно известно, что лишь два химических элемента – водород и гелий – существовали с момента Большого взрыва. Идущие за ними в Периодической таблице Менделеева литий, бериллий и бор возникают при бомбардировке межзвездной среды космическими лучами, а следующие элементы появляются в ходе термоядерных реакций внутри звезд.
Температура и давление внутри звезд слишком низки для появления элементов тяжелее железа при термоядерных реакциях, поэтому такие элементы могут возникать только при взрывах сверхновых. В то же время, при взрывах они возникают в достаточно небольших количествах, которые несравнимы с общими оценками наличия тяжелых элементов во Вселенной.
Теория о том, что тяжелые элементы в больших количествах могут возникать в результате слияния нейтронных звезд, возникла еще несколько десятилетий назад. Полученные учеными при произошедшем в августе слиянии фактические данные ее подтверждают.
При слиянии нейтронных звезд основная часть массы становится новой очень быстро вращающейся нейтронной звездой или черной дырой, часть переходит в гравитационные волны, а часть под действием ударной волны вылетает из системы. Вылетевшие нейтроны в короткий промежуток времени сливаются с находившимися на внешней оболочке нейтронной звезды ядрами тяжелых элементов – происходит так называемый быстрый нейтронный захват, при котором образуются стабильные изотопы.
Ключевое отличие этого процесса от медленного нейтронного захвата, который может протекать и в обычных звездах, заключается в крайне быстром его протекании. Темп быстрого захвата выше, чем темп бета-распада изотопа, поэтому вновь образованные атомы не успевают распадаться и при таком захвате могут получаться стабильные элементы со временем полураспада в несколько миллиардов лет.
Слияние нейтронных звезд – достаточно редкое явление (например, в галактике Млечный путь оно происходит раз в 10 тысяч лет). Однако количественно оно очень сильно влияет на появление тяжелых элементов во Вселенной: одно слияние приводит к появлению золота в количестве около 200 масс Земли и платины в количестве до 500 масс.
Источник