Меню

Радиус черной дыры для солнца

Шварцшильдовская черная дыра

Радиус Шварцшильда и Сингулярность — Горизонт событий черной дыры — Как проходит процесс появления черной дыры?

Радиус Шварцшильда и Сингулярность

Известно, что черные дыры образуются тогда, когда на материю воздействует запредельная по силе гравитация, что может случится, например, при “схлопывании” (коллапсе) звезды, массой в пару десятков раз превышающей Солнце. Где находится тот самый предел, до которого сжатая материя все ещё остается вполне ощутимым физическим объектом, а после которого – “проваливается сама в себя”, образуя черную дыру?

Такой предел существует и в самом деле – черная дыра образуется, только тогда, когда определенное количество вещества сжато в сферу, с радиусом, равным радиусу Шварцшильда.

Сам же радиус Шварцшильда представляет собой величину, которую можно определить для любого тела обладающего массой, и на которой находился бы горизонт событий, создаваемый этой массой (проще говоря – размер шарика до которого можно “уплотнить” материю без превращения в черную дыру). Термин был введен в обиход немцем Карлом Шварцшильдом в 1916 году.

Наглядная схема того «как устроена» черная дыра

Как происходит превращение звезды в черную дыру? Если в начале коллапса масса звезды (ее ядра или всего того, что от нее осталось) превышает 3 массы Солнца, то сжатие будет продолжаться до тех пор, пока все вещество звезды не окажется сосредоточенным в некоторой точке, называемой сингулярностью.

В сингулярности вещество сжато до бесконечной плотности бесконечно большими гравитационными силами, иначе говоря, кривизна пространства-времени в сингулярности бесконечна. Однако современная физика пока еще не в состоянии оперировать бесконечными силами и плотностями; поэтому можно считать, что законы природы — в том смысле, как мы их понимаем — в сингулярности утрачивают силу.

Если говорить совсем по простому, вещество из которого состояла сколлапсировавшая звезда в сингулярности перестает существовать.

Горизонт событий черной дыры

Как только сколлапсировавшая звезда сжимается в сферу шварцшильдовского радиуса, она исчезает для наблюдателя, поскольку свет ее поверхности уже не может достичь нас. В этом случае мы говорим о формировании некоего горизонта, и все происходящее в пределах этого горизонта недоступно нашему наблюдению.

Есть основания полагать, что там звезда продолжает коллапсировать в сингулярность, но мы в принципе не имеем возможности наблюдать этот процесс или каким-либо другим путем получать информацию о превращениях звездного вещества. Черная дыра, образовавшаяся в результате коллапса массивной звезды,— это сферический объем пространства, имеющий радиус, равный радиусу Шварцшильда, и сингулярность—в центре.

Граница черной дыры носит название горизонта событий, так как никакие сведения о событиях внутри черной дыры не могут распространяться во Вселенной за пределами этого горизонта.

У черной дыры, разумеется, нет твердой поверхности. Если бы вам пришлось пересекать горизонт событий, то вы не заметили бы никаких изменений пространства, но, оказавшись внутри этой границы, вы уже не смогли бы двигаться назад и с неизбежностью упали бы на центральную сингулярность. Горизонт событий — это односторонняя граница. Все вещественные объекты, свет и любое другое излучение могут падать в черную дыру, но ничто не может покинуть ее.

Как проходит процесс появления черной дыры?

Если не в действительности, то по крайней мере в принципе почти любого количества вещества достаточно для формирования черной дыры. Каждой величине массы соответствует свое значение радиуса Шварцшильда, внутри которого эта масса должна быть заключена. Чтобы составить некоторое представление о величине радиуса Шварцшильда, укажем, что для Солнца он должен быть немного меньше 3 км. То есть если вся масса Солнца окажется внутри сферы такого радиуса, то Солнце превратится в черную дыру.

Нетрудно подсчитать, что при нынешнем радиусе Солнца (700 000 км) плотность его вещества, сжатого в сферу шварцшильдского радиуса, в 10 раз превысит плотность воды. Если бы какой-нибудь физик вдруг задумал сделать черную дыру из нашей планеты, то ему пришлось бы сжать Землю в сферу радиусом меньше 30 см!

Впрочем, это чисто теоретический подсчет. В реальности все несколько сложнее. При нынешнем состоянии Вселенной ни Солнце, ни Земля не могут сами по себе превратиться в черные дыры. Массы не хватит!

Звезды, имеющие к концу своей жизни массу меньше 2—3 солнечных, в основном становятся не черными дырами, а белыми карликами или нейтронными звездами. Однако известно много звезд, масса которых значительно превышает этот предел, и, хотя к концу своей эволюции звезды многими способами могут избавиться от излишков вещества, весьма вероятно, что некоторые из таких сверхмассивных звезд на последнем этапе своего существования все-таки становятся черными дырами.

Шварцшильдовский радиус звезды массой 10 солнечных составляет примерно 30 км. Так как объем сферы пропорционален кубу радиуса, а радиус черной дыры зависит от ее массы, выходит, что плотность вещества, сжатого до размеров сферы Шварцшильда, имеет меньшее значение для звезд большей массы.

Так, звезда массой 10 солнечных в тот момент, когда в процессе коллапса ее радиус окажется равным радиусу Шварцшильда, будет иметь плотность всего лишь в 10 4 раз выше плотности воды, а средняя плотность вещества нейтронных звезд составляет, по нашим представлениям, 10 8 кг/м3.

Поскольку у нас нет сомнений в факте существования нейтронных звезд, то, очевидно, вещество может быть сжато до таких огромных значений плотности, а, как мы только что выяснили, плотность коллапсирующей массивной звезды в тот момент, когда она становится черной дырой, на порядок меньше плотности нейтронной звезды.

Конечно, внутри черной дыры коллапс будет продолжаться до тех пор, пока плотность вещества не станет бесконечной, но, что бы ни происходило внутри, факт остается фактом: черные дыры могут образовываться из вещества с плотностью, заведомо меньшей плотности объектов, существование которых во Вселенной твердо установлено.

Развивая эту мысль дальше, находим, например, что черная дыра массой 10 солнечных будет иметь радиус около 300 млн. км (т. е. вдвое больше радиуса земной орбиты), а средняя плотность вещества при “уходе” его за горизонт событий окажется почти равной плотности воды. Черная дыра массой в несколько миллиардов масс Солнца в момент своего формирования будет иметь такую же плотность, как воздух у поверхности Земли.

Читайте также:  Скайрим древний свиток солнце что с ним делать

Стоит еще раз подчеркнуть, что если вещество объекта данной массы сжалось до сферы радиуса Шварцшильда, то уже ничто не в состоянии воспрепятствовать его бесконечному коллапсу, однако для формирования черной дыры никакого невероятного сжатия материи не требуется.

Источник

Радиус Шварцшильда — это особый параметр любого физического тела

Сегодня о черных дырах слышали практически все. О них пишут фантастические произведения, снимают художественные и научно-популярные фильмы и даже используют это выражение в переносном смысле, как символ места, где что-нибудь безвозвратно исчезает. И это, в общем, верно.

Но почему исчезает и почему безвозвратно? Для ответа на вопрос нам понадобится одно из ключевых понятий теории черных дыр – понятие радиуса Шварцшильда. Это- критический размер для любого объекта, обладающего массой, нужно только втиснуть данную массу в этот размер, и она окажется наглухо отделена от внешнего мира горизонтом событий.

Как сделать черную дыру

Получить простейшую черную дыру нетрудно – мысленно, конечно. Нужно взять звезду (или любое другое тело – например, планету или булыжник) и сжимать, уменьшая ее радиус при сохранении массы. Представим себя на такой звезде или планете: при сжатии она уплотняется, расстояние между всеми частицами ее вещества сокращается, следовательно, возрастает сила притяжения между ними – в полном соответствии с законом всемирного тяготения. Нас тоже станет прижимать к поверхности – ведь все частицы звезды приближаются и к нам.

Покинуть злосчастное небесное тело будет все труднее, а через некоторое время мы не сможем не только улететь с него, но и послать сигнал SOS – если дождемся момента, когда вторая космическая скорость (скорость убегания) на поверхности не достигнет скорости света. Произойдет это при достижении звездой некоторого критического размера.

Немного вычислений

Расчет радиуса Шварцшильда (гравитационного радиуса) для любого тела очень прост. Нужно взять формулу для расчета второй космической скорости v2 =√(2GM/r), где v2 – скорость убегания, M – масса, r – радиус, G – гравитационная постоянная, коэффициент пропорциональности, установленный экспериментальным путем. Значение его постоянно уточняется; сейчас оно принято равным 6,67408 × 10 -11 м 3 кг -1 с -2 .

Пусть v=c. Производим необходимую замену в уравнении и получаем: rg =2GM/c 2 , где rg – гравитационный радиус.

В правой части уравнения имеем две константы – гравитационную постоянную и скорость света. Так что радиус Шварцшильда – это величина, зависящая только от массы тела и прямо пропорциональная ей.

Произведя несложные вычисления, легко узнать, чему равен радиус Шварцшильда, например, для Земли: 8,86 мм. Втисните массу планеты в шарик диаметром чуть более полутора сантиметров — и вы получите черную дыру. Для Юпитера гравитационный радиус составит 2,82 м, для Солнца – 2,95 км. Играть можно с чем угодно, единственное ограничение на условия нахождения радиуса Шварцшильда — это минимальная возможная масса черной дыры 2,176 × 10 -8 кг (планковская масса).

Черные дыры обязаны быть

Идея о том, что должны существовать объекты с таким соотношением массы и радиуса, что даже свет не может вырваться из этой гравитационной «ловушки», довольно стара. Восходит она к концу XVIII века, к работам Дж. Митчелла и П. Лапласа и ныне представляет интерес, скорее, для истории науки. А современное понимание сущности черных дыр берет начало в 1916 году, когда немецкий физик и астроном Карл Шварцшильд впервые применил общую теорию относительности для решения астрофизической задачи.

Требовалось описать гравитационное поле одиночного сферического невращающегося тела в вакууме. Решением задачи стала так называемая метрика Шварцшильда, в которой присутствует уже знакомый нам параметр, равный 2GM/c 2 – гравитационный радиус (ученый обозначил его как rS).

Вблизи опасной черты

Расчеты Шварцшильда показывают, что, если размеры объекта много больше этой критической для массы M величины, то структура пространства-времени не слишком искажается его гравитацией: собственно, в этом случае можно пользоваться ньютоновским описанием тяготения и пренебречь поправками ОТО. Последние становятся существенны при r → rS. Например, замедление времени и связанный с ним эффект гравитационного красного смещения. Тяготение искривляет пространство-время таким образом, что для удаленного наблюдателя время вблизи гравитирующего тела замедляется, в связи с чем уменьшается частота электромагнитных колебаний. Наблюдая сжимающуюся звезду, мы зафиксируем ее быстрое «покраснение» (вклад в данный эффект вносит еще и доплеровский сдвиг, поскольку поверхность звезды от нас будет удаляться).

Что такое радиус Шварцшильда и горизонт событий

Как только радиус звезды достигнет значения rS, время на ее поверхности замрет, и частота излучения будет равна нулю. Никакой сигнал не выходит из-под поверхности шварцшильдовского радиуса – горизонта событий, — будучи заморожен гравитацией. Иными словами, события (точки пространства-времени в понимании ОТО) по разные стороны сферы Шварцшильда никаким образом не могут быть соединены, и внешний наблюдатель лишен возможности узнать что-либо о событиях внутри.

Итак, радиус Шварцшильда – это параметр поверхности, на которой располагался бы горизонт событий, создаваемый массой сферически-симметричного невращающегося тела, если бы эта масса целиком была заключена внутри данной сферы.

Проскочив горизонт событий, сжимающееся тело не остановится – коллапс после этого рубежа станет необратимым, и оно рухнет в гравитационную «могилу» сингулярности. Мы действительно получили черную дыру.

Интересно ведет себя свет вблизи горизонта событий: в сильно искривленном пространстве лучи его оказываются пойманы на круговые орбиты. Совокупность таких неустойчивых хаотических орбит образует фотонную сферу.

Все сложнее

Шварцшильдовская черная дыра – это простейший случай, вряд ли реализуемый во Вселенной, поскольку трудно найти невращающееся космическое тело, и при образовании реальных черных дыр угловой момент должен сохраняться. Вращающаяся черная дыра может постепенно терять энергию, приближаясь к шварцшильдовскому состоянию. Скорость вращения ее будет стремиться к нулю, но не достигнет его.

Читайте также:  Утомленное солнце перевод английский

Расчеты радиуса черной дыры Шварцшильда сделаны в рамках ОТО и являются классическими. Однако, мы не будем касаться эффектов, налагаемых на современные модели черных дыр квантовой механикой, так как одно перечисление их увело бы нас далеко от темы.

Сделаем только одно замечание: классическая теория утверждает, что прямое наблюдение горизонта событий невозможно. Впрочем, в истории науки часто считавшееся невозможным успешно осуществлялось, и в этом смысле теоретические исследования квантовомеханических явлений в черных дырах наверняка принесут еще много неожиданного и интересного. В рамках же классики физика черных дыр — это пример прекрасно разработанной, красивой теории, а основой ее исторически является работа Шварцшильда.

Источник

Все за сегодня

Политика

Экономика

Наука

Война и ВПК

Общество

ИноБлоги

Подкасты

Мультимедиа

Наука

Astronomy (США): каковы размеры черной дыры?

Где-то в центре Млечного Пути скрывается гигантская черная дыра, масса которой в несколько миллионов раз превосходит массу Солнца. Как и все черные дыры, этот сверхмассивный гигант под названием «Стрелец А*» (сокращенно Sgr A*, произносится «Стрелец А со звёздочкой» — прим. перев.) поглощает всё, что попадается в область действия его гравитационного поля, — этот гигант пожирает абсолютно всё, включая свет. Тем не менее, поглощение материи — это лишь один из способов, с помощью которого эти космические монстры вырастают поистине до астрономических размеров, набирая умопомрачительную массу. Заметим, что характеризуя черную дыру как гигантский космический объект, астрономы обычно имеют в виду его гигантскую массу, а не размеры.

И здесь возникает логичный вопрос: а каковы размеры разных черных дыр?

Распределение черных дыр по классам в зависимости от массы

Обычная черная дыра (она известна как «черная дыра звездной массы») образуется, когда эволюционный цикл массивной звезды, вес которой превышает почти 8 солнечных масс, подходит к концу. После того, как догорят остатки ядерного топлива, наступает фаза быстрого гравитационного сжатия (или гравитационного коллапса) звезды, после чего происходит гигантский взрыв, — так появляется сверхновая звезда. А то, что останется, превратится либо в нейтронную звезду, либо в черную дыру, — все зависит от массы звезды. Масса таких черных дыр может варьироваться от пары до нескольких десятков солнечных масс.

Тем не менее вопрос о происхождении сверхтяжелых черных дыр, таких как «Стрелец А*», которые могут в миллионы и даже миллиарды раз превышать массу Солнца, остается нерешенным. Астрономы знают, что гигантские размеры и масса таких черных дыр, по-видимому, связаны с галактиками родственной связью, причем самые большие из сверхтяжелых черных дыр были обнаружены в центрах самых больших галактик.

Указанные доводы, а также недавно появившиеся свидетельства существования одного теоретически предсказанного класса черных дыр среднего размера (их называют черными дырами средней массы, которая варьируется от сотен до миллиона солнечных масс), по-видимому, указывают на то, что черные дыры могут стать сверхмассивными после того, как бесчисленное количество черных дыр звездной массы и промежуточной массы через миллиарды лет сольются воедино.

Ясно, что различные типы черных дыр могут значительно различаться по массе, и все же, не совсем ясно, насколько они различаются по размерам.

А что, если Земля и Солнце были когда-то черными дырами?

Чтобы изучить размеры черных дыр, давайте сначала рассмотрим два наиболее изученных объекта — Землю и Солнце.

Масса Земли составляет около 6×10 24 кг. И хотя с точки зрения обывателя это гигантская цифра, она все-таки ничтожна по сравнению с массой черной дыры.

Чтобы появилась черная дыра, нужно сконцентрировать достаточно большую массу, причем ее гравитационное притяжение должно быть настолько сильным, что никакая другая сила не сможет предотвратить гравитационный коллапс этой массы. Вот почему ученые не смогли найти черные дыры, столь же легкие, как Земля, — этим космическим объектам просто не хватило бы массы для гравитационного сжатия. (Но некоторые ученые считают, что в первые несколько мгновений после Большого взрыва мог появиться класс так называемых древних первичных черных дыр. Масса этих гипотетических объектов могла бы варьироваться от совсем небольшой до гигантской, в десятки тысяч раз превышающей массу Солнца.)

Считается, что в центре черной дыры находится бездонная гравитационная яма пространства-времени, называемая гравитационной сингулярностью. Плотность этой сингулярности бесконечна, и все, что туда попадает, остается там навсегда. Внешний край черной дыры называется горизонтом событий; он представляет собой ту границу, за пределы которой не может вырваться ни одна частица материи, попавшей в гравитационное поле черной дыры, включая кванты света. Радиус горизонта событий зависит от массы черной дыры; этот радиус был впервые рассчитан немецким астрономом Карлом Шварцшильдом (Karl Schwarzschild) в 1916 году.

Для черной дыры массой, сравнимой с массой Земли, радиус Шварцшильда составляет менее одного дюйма (2,54 см), — то есть размером с шарик для настольного тенниса. Для Солнца радиус Шварцшильда составит немногим менее двух миль (3,2 км).

Каковы самые маленькие из известных черных дыр?

Как мы знаем, черные дыры очень трудно обнаружить. И все потому, что, в отличие от звезд, они не светятся, поскольку фотоны света никогда не вырвутся за пределы горизонта событий. Тем не менее иногда у черной дыры появляется аккреционный диск — ореол вещества, движущегося вокруг черной дыры; при этом из-за трения между слоями этого вещества происходит свечение. Ученые способны наблюдать черную дыру лишь благодаря свету, излучаемому аккреционным диском; иначе черная дыра невидима. Кроме того, черную дыру можно обнаружить по тому влиянию, которое она оказывает на другие космические объекты. Например, ученые обнаружили объект «Стрелец А*» только после того, как была зафиксирована странность в поведении семи звезд, вращающихся вокруг него.

Читайте также:  Светит летнее яркое солнце

Контекст

Грандиозный прорыв: первые фото черной дыры (Telegraph)

Science: как выглядит черная дыра

Forbes: как эта черная дыра так быстро стала такой большой?

FAZ: черная дыра в центре нашей галактики становится агрессивнее

Квазары развиваются в чрезвычайно ярких активных ядрах галактик (это центры галактик), в которых находится сверхмассивная черная дыра, окруженная ярким и мощным аккреционным диском. По некоторым оценкам, черная дыра в GRO J1655-40 весит примерно в 5,4 раза больше Солнца, а ее радиус составляет около 10 миль (16 км). Изучая подобные микроквазары, астрономы надеются лучше понять возможную связь между гигантами, скрытыми в ядрах галактик, и небольшими аккрецирующими черными дырами, разбросанными по галактикам.

В 2008 году ученые поначалу пришли к выводу, что обнаружили черную дыру еще меньшего размера, но позже теми же исследователями масса этого космического объекта была скорректирована. Любая черная дыра меньших размеров могла появиться, скорее всего, в результате слияния двух нейтронных звезд, а не в результате гравитационного коллапса умирающей звезды. Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) обнаружила гравитационные волны от возможного слияния нейтронных звезд в 2017 году, всего через два года после того, как гравитационные волны были вообще впервые обнаружены. Гравитационные волны, испускаемые во время слияний, дают ученым новый способ идентифицировать черные дыры в радиусе 100 миллионов световых лет от Земли.

С другой стороны, размер черной дыры звездной массы зависит от того, насколько массивной была звезда, ей предшествовавшая. Самая тяжелая звезда из всех известных, которая была найдена на сегодняшний день, обозначена аббревиатурой R136a1, она весит в 315 раз больше Солнца. Черная дыра с такой же массой, получившаяся из нее в результате гравитационного коллапса, имела бы радиус около 578 миль (930,2 км). Несмотря на свои большие размеры (по сравнению с самыми маленькими из известных черных дыр), даже эта огромная черная дыра звездной массы не идет ни в какое в сравнение со своими сверхмассивными родственниками.

Насколько велики черные дыры промежуточной массы?

Между черными дырами звездной массы и сверхмассивными черными дырами находятся так называемые черные дыры промежуточной массы — то есть долгожданное «недостающее звено» в эволюции черной дыры. На сегодняшний день найдено лишь несколько кандидатов на роль этого звена, в том числе космический объект, найденный телескопом «Хаббл» в начале нынешнего года. Такие объекты найти еще труднее, поскольку они менее активны в отсутствие близко расположенных космических объектов, которые служат для них своеобразным «топливом».

Масса черной дыры, недавно обнаруженной «Хабблом», в 50 тысяч раз превышает массу Солнца. Она находится в отдаленном плотном звездном скоплении, расположенном на окраине галактики бóльших размеров, именно там астрономы ожидали найти доказательства этих «недостающих звеньев». Такой кандидат на роль черной дыры промежуточной массы окажется в десятки тысяч раз тяжелее Солнца, а его радиус составит одну пятую радиуса Солнца, или примерно вдвое больше радиуса Юпитера.

И хотя черные дыры промежуточной массы обладают значительными размерами, их вес колеблется в пределах от 100 до 100 тысяч солнечных масс. Между тем масса сверхтяжелых чёрных дыр может в миллиарды раз превосходить солнечную.

Определяем размеры сверхтяжелых черных дыр

У центральной черной дыры нашей галактики, «Стрелец A*», расположенной в 26 тысячах световых лет от Солнца, радиус примерно в 17 раз превышает солнечный, а это значит, что размеры этой черной дыры ограничены, к примеру, орбитой Меркурия. И хотя упомянутая нами черная дыра в Млечном Пути весит около 4 миллионов солнечных масс, ее размеры малы по сравнению с размерами некоторых других сверхмассивных черных дыр, которые скрываются в центре других галактик.

Самая большая из сверхмассивных черных дыр, обнаруженных на сегодняшний день, находится в скоплении галактик Abell 85. В центре этого скопления расположена галактика Holm 15A, где общая масса сосредоточенного там вещества составляет около 2 триллионов солнечных масс. Центр этой галактики почти столь же велик, как Большое Магелланово Облако, радиус которого составляет 7000 световых лет.

Это скопление звезд расположено на расстоянии 700 миллионов световых лет от Земли, его размеры вдвое превышают размеры любой из предыдущих черных дыр. Это было установлено после того, как стала поступать информация из обсерватории на горе Вендельштейн при Университете им. Людвига и Максимилиана и от телескопа VLT (Very Large Telescope — «Очень большой телескоп») Европейской Южной Обсерватории. Ученые обнаружили, что черная дыра в центре галактики Holm 15A обладает колоссальной массой — 40 миллиардов солнечных масс, или примерно две трети массы всех звезд Млечного Пути. При такой гигантской массе она имеет диаметр, сопоставимый с диаметром Солнечной системы, — вообще это небывалый размер для какого-либо единичного объекта.

Но размер наблюдаемой Вселенной составляет 46,5 миллиардов световых лет во всех направлениях, а это означает, что астрономы делают лишь первые шаги, позволяющие понять природу черных дыр. Только год назад с помощью телескопа Event Horizon Telescope (Телескоп горизонта событий), который состоит из восьми телескопов, расположенных в разных частях Земли, впервые удалось получить изображение черной дыры. Кроме того, ожидается, что обсерватории LIGO и Virgo, изучающие гравитационные волны, смогут ежегодно обнаруживать благодаря новым технологиям около 40 слияний двойных звезд, а также открывать черные дыры и нейтронные звезды, расположенные по соседству с такими звездами. Кроме того, благодаря более совершенным телескопам, таким как Космический телескоп НАСА имени Джеймса Уэбба (James Webb Space Telescope, JWST) и Чрезвычайно большой телескоп (Extremely Large Telescope, ELT) Европейского космического агентства, которые получат первые изображения в течение следующего десятилетия, сложно предугадать, сколько вообще черных дыр — этих космических монстров — будет обнаружено в будущем в темных глубинах космоса.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Источник

Adblock
detector