Меню

Расширение вселенной будет ускорятся

Почему вселенная расширяется? И как долго?

Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.

Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.

Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.

На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.

Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.

Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.

Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).

Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».

Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.

Теория большого взрыва и эволюция вселенной

Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.

Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.

Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.

Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.

В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.

Космическое микроволновое фоновое излучение

Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.

Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.

Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».

Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.

Читайте также:  Все мутанты вселенной метро 2033

Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.

Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.

Темная энергия и конечная судьба Вселенной

На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.

Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.

Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.

В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена ​​исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!

Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.

Тем не менее похоже, что Эйнштейн не так сильно ошибался.

Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.

В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.

Источник

Ускоряющееся расширение Вселенной ставит ученых в тупик

Изучая поведение квазаров, рожденных в молодой Вселенной, астрономы попытались в очередной раз измерить скорость расширения пространства-времени.

Однако из-за этого исследования теперь возникает куда больше вопросов, чем удалось получить ответов.

Оказывается, что Вселенная расширяется значительно быстрее, чем предсказывалось ранее. Это может означать, что темная энергия, которая, как считается, отвечает за ускорение этого самого расширения, не является космологической постоянной.

Все не так просто

Скорость расширения Вселенной называют константой Хаббла и ее было невероятно трудно определить. Проблема в том, что при выборе новой методики получается неоднозначный результат.

Недавно, применив данные со спутника «Планк», который измерял космический микроволновый фон, было установлено, что Вселенная расширяется со скоростью 67,4 километра в секунду на мегапарсек с погрешностью результата менее 1%.

Другие методы предлагают использовать для определения скорости звезды цефеиды или сверхновые типа Ia, которые позволяют рассчитать расстояние на основе их абсолютной величины. В 2018 году расчет переменной звезды цефеиды для постоянной Хаббла дал результат 73,5 километра в секунду на мегапарсек.

Согласитесь, что разница ощутимая и по этой причине ученые пытаются найти «золотую середину», чтобы объяснить столь отличные друг от друга результаты.

Астрономы решили использовать в качестве ориентиров квазары, сформированные в молодой Вселенной.

Почему квазары?

Квазары — одни из самых ярких объектов во Вселенной. Обитают они в центре некоторых галактик, где миллиарды звезд вращаются вокруг черной дыры, активно «пожирающей» материю. Световое и радиоволновое излучение квазаров объясняется огромным аккреционным диском, которые излучает интенсивный свет и тепло за счет непрерывной циркуляции.

Кроме этого, квазары излучают рентгеновское и ультрафиолетовое излучение. Когда известно соотношение этих двух типов волн, квазар может быть использован, как ориентир для определения постоянной Хаббла.

«Использование квазаров в качестве ориентиров — мудрое решение. В отличие от сверхновых типа Ia, квазары можно наблюдать на гораздо большем расстоянии, а значит мы можем найти те, что были сформированы в молодой Вселенной. Это повышает точность измерений», — прокомментировала исследование Элизабета Луссо, астрофизик из Университета Дарема, Великобритания.

В своей новой работе астрономы собрали данные ультрафиолетового излучения о 1598 квазаров, которые были сформированы в промежутке между 1-2,3 млрд. лет после Большого Взрыва. Это дало надежду измерить скорость расширения ранней Вселенной с высокой точностью.

«Мы наблюдали за квазарами, которые родились всего через миллиард лет после Большого Взрыва и обнаружили, что скорость расширения Вселенной сегодня значительно выше, чем была в далеком прошлом. Если допускать существование темной энергии, то со временем ее становится все больше и больше», — отметил Гвидо Рисалити, астрофизик из Университета Флоренции, Италия.

Да, темную энергию никто не видел, но это лишь собирательное название, характеризующее неизвестные силы отталкивания, ведущие к ускорению расширения пространства-времени.

Читайте также:  Вселенная глазами древних славян

Если плотность темной энергии со временем увеличивается, то называть этот параметр космологической постоянной было бы неуместно. Однако, как отмечают ученые, это может объяснить несоответствие между предыдущими результатами определения константы Хаббла.

«Новый подход к определению скорости расширения Вселенной весьма перспективный, но он потребует много времени, чтобы сделать какие-то конкретные выводы. Нужно понимать, что перед нами непростая задача, так как мы пытаемся решить самую настоящую космическую головоломку», — сказал Гвидо Рисалити.

«Некоторые из наших коллег стали говорить о том, что для объяснения несоответствия может потребоваться новая физика. Имеющиеся знания не позволяют объяснить рост темной энергии», — заключила Элизабета Луссо.

Источник

Ускоряющееся расширение Вселенной станет доступно прямому измерению в ближайшее десятилетие

Ускорение галактик, находящихся на разных красных смещениях z от 0 до 3. Черная линия — теоретическое предсказание на основе современной космологической картины (ΛCDM); штриховые линии — теоретические предсказания, обходящиеся совсем без темной энергии. Точки с погрешностями — ожидаемые экспериментальные результаты, которые сможет получить специализированный радиотелескоп нового поколения за десятилетие работы. Цветом выделена та область красных смещений, на которые ориентируется будущий эксперимент CHIME. Изображение из обсуждаемой статьи

Известно, что Вселенная расширяется, причем расширяется с ускорением. Однако все экспериментальные свидетельства в пользу ускорения были получены косвенными методами: для прямого наблюдения пока не хватает чувствительности телескопов. Расчеты, опубликованные в журнале Physical Review Letters, показывают, что небольшая модификация строящихся сейчас радиотелескопов позволит вскоре напрямую обнаружить ускоренное расширение Вселенной.

Ускоряющееся расширение Вселенной и трудности его наблюдения

Астрономические наблюдения показывают, что Вселенная в целом расширяется. Далекие галактики движутся в сторону от нас, причем чем дальше они находятся, тем быстрее они от нас убегают. Этот факт, равно как и закон Хаббла, связывающий расстояние до галактик со скоростью их удаления от нас, известны уже почти век. Подробнее об измерениях, на которые опираются эти выводы, читайте в статье Откуда астрономы это знают?, в публичной лекции Джона Мазера и в большом списке вопросов и ответов по космологии.

Относительно недавно было также обнаружено, что Вселенная сейчас расширяется с ускорением. Первые наблюдательные результаты в пользу этого появились в 1998 году, и после десятилетия критических проверок и независимых подтверждений этот вывод тоже стал установленным фактом в космологии. Нобелевская премия по физике за 2011 год была присуждена как раз за это открытие. В рамках современной космологической картины мира за это ускоряющееся расширение отвечает не обычное вещество и даже не загадочная темная материя, а совершенно особенная субстанция, названная темной энергией.

Астрономические наблюдения, подтверждающие ускоряющееся расширение Вселенной, разнообразны. Однако надо четко понимать, что все эти наблюдения — косвенные. Мы не видим напрямую, что темп расширения Вселенной растет со временем. Мы имеем лишь каталог объектов, находящихся на разных расстояниях от нас, измеряем их скорости и яркости, пытаемся сравнить получившееся распределение с теоретическими расчетами и понимаем, что весь набор данных не удается объяснить простым равномерным расширением. Зато предположение о темной энергии, которое подтверждают и другие космологические данные, отлично с этим описанием справляется.

Тем не менее для пущей достоверности, для железной гарантии факт ускоряющегося расширения Вселенной полезно измерить и напрямую. Это можно сделать с помощью так называемого теста Сэндиджа–Лоуба (Sandage–Loeb test). Выглядит он довольно просто. Мы следим за каким-то далеким объектом и измеряем его скорость удаления с помощью эффекта Доплера. Если свет был испущен источником на одной длине волны, а мы его регистрируем на другой, большей, то их отношение даст нам величину красного смещения источника z, а оно позволяет найти скорость его удаления. Если такое измерение проводить раз за разом в течение нескольких лет, то рано или поздно мы заметим, что красное смещение растет — источник света ускоряется относительно нас. При таком измерении нам не требуется сравнивать разные объекты, оценивать расстояние до них или измерять их яркость. Достаточно лишь следить за красным смещением одного и того же объекта, но в течение долгого времени. Поскольку спектроскопические измерения очень точны, а сам источник никуда не девается, казалось бы, проблем с этим измерением быть не должно.

Однако чуть более внимательный взгляд вскрывает ряд трудностей. Во-первых, предполагаемое ускорение должно быть очень маленьким. В качестве самой грубой оценки можно взять скорость света деленную на возраст Вселенной (13 млрд лет), это даст примерно 2 (см/с)/год, то есть около 10 −10 от ускорения свободного падения за Земле. Такого порядка было бы ускорение у объектов на больших красных смещениях z — при условии, что они действительно ускоряются.

Однако тут всплывает вторая трудность. Ускоренным расширение было не всегда. Ускорение началось относительно недавно по космологическим масштабам, когда возраст Вселенной составлял уже 10 млрд лет. До этого Вселенная расширялась с замедлением: гравитационное притяжение тогда еще преобладало над расталкивающим эффектом темной энергии. Поэтому если мы будем наблюдать далекие галактики с z > 2, то мы будем видеть их еще в ту далекую эпоху, когда ускорения еще не было. Так что для прямого наблюдения ускорения приходится смотреть лишь на довольно близкие объекты, только они уже ускоряются для наших сегодняшних наблюдений. А раз они близки, то и ускорение у них будет еще меньше; вычисления показывают, что оно не будет превышать 0,4 (см/с)/год (см. рисунок).

Читайте также:  Квантовая теория устройства вселенной

Третья трудность возникает из банального факта, что галактики взаимодействуют друг с другом. Это значит, что у них есть и обычное ускорение, вызванное гравитационным притяжением и вовсе не связанное с ускоренным расширением Вселенной. Его тоже надо принимать во внимание, чтоб не спутать его искомым космологическим эффектом. Да и сама Солнечная система, а значит, и приборы наблюдения, тоже испытывает центростремительное ускорение, направленное к центру нашей галактики. К счастью, это собственное ускорение легко контролируется с помощью периодов пульсаров.

Четвертая трудность вызвана уже внутренним движением светящегося вещества внутри источника. Свет от далекой галактики — это совокупность свечения большого числа объектов или протяженных областей. У всех них есть какие-то свои скорости движения внутри галактики, которые то складываются, то вычитаются из скорости самой галактики. Даже внутри одного горячего источника есть атомы, которые в момент излучения движутся с большими скоростями на нас или от нас. Поэтому даже если все они в своих системах отсчета излучают свет на какой-то одной длине волны, мы будем наблюдать не узкую, а слегка размытую линию излучения. Из-за этого неизбежного доплеровского размытия заметить ничтожный космологический сдвиг линии излучения будет очень трудно.

Прямое измерение ускорения в радиолинии водорода

В статье Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems, опубликованной на днях в журнале Physical Review Letters, описывается метод прямого измерения ускоренного расширения Вселенной, позволяющий частично преодолеть эти трудности. Сам по себе этот метод тоже не нов, однако до сих пор не было особой уверенности, что он позволит за разумные сроки привести к надежному обнаружению ускорения. Приведенные в статье расчеты демонстрируют, что это действительно так, если только внести некоторые модификации в строящиеся сейчас радиотелескопы нового поколения.

Здесь используется по сути тот же эффект, но только не для линий излучения, а для линий поглощения, и кроме того — не для оптического диапазона, а для радиоизлучения на длине волны 21 см. Число это взято вовсе не с потолка. Знаменитая спектральная линия 21 см возникает в результате перескока электрона в атоме водорода между двумя очень близкими уровнями энергии, разделенными за счет сверхтонкого расщепления. Радионаблюдения неба на этой длине волны позволяют картографировать протяженные облака нейтрального атомарного водорода в галактиках. Если достаточно плотное облако водорода находится на пути радиоизлучения от какой-то еще более далекой галактики, мы видим линию поглощения — провал интенсивности радиосигнала на этой длине волны. Сравнивая измеренную длину волны с номинальной, мы по доплеровскому эффекту получаем скорость облака водорода.

В статье описано несколько преимуществ радионаблюдений на 21 см по сравнению с обычными оптическими. Во-первых, сама по себе эта линия исключительно узкая и ее положение известно с огромной точностью. Во-вторых, она возникает в облаке холодного водорода, поскольку горячий водород не оставался бы нейтральным газом. Это значит, что скорость движения отдельных атомов невелика и размытие линии получается намного меньше, чем для горячего источника.

В-третьих, сейчас строится целое семейство радиотелескопов, которые в ближайшие годы начнут наблюдать Вселенную как раз в радиолинии нейтрального водорода и на нужных красных смещениях. Это, например, канадский эксперимент CHIME, который должен заработать в следующем году, или, в более отдаленной перспективе, гигантский проект SKA с площадью радиоантенн в квадратный километр. Их основные задачи связаны с изучением пространственного распределения водорода во Вселенной, но, как поясняют авторы статьи, их можно адаптировать и для детектирования ускоренного расширения. Для этого потребуется еще больше повысить спектральное разрешение телескопа, а также гарантировать стабильность частоты на уровне 10 −11 за десятилетие. В принципе, это реализуемо с помощью современных стандартов частоты, однако их необходимо внедрять в проекты уже сейчас, на этапе строительства радиотелескопов.

Надо сказать, что попытки измерить ускорение с помощью этой же линии 21 см уже предпринимались. Последний результат здесь датируется 2012 годом. Радионаблюдения в течение 13 лет за десятком объектов, расположенных на красных смещениях от 0,09 до 0,69, дало следующий результат для ускорения: −5,5±2,2 (м/с)/год (заметьте — м/с, а не см/с!). Знак минус означает не ускорение, а замедление, что на первый взгляд противоречит ускоряющемуся расширению, однако из-за большой погрешности никаких окончательных выводов тут делать не следует. Чтобы почувствовать предсказываемое ускоренное расширение Вселенной, чувствительность эксперимента следует увеличить на три порядка. Авторы статьи уверяют, что это возможно. Выигрыш тут будет не только в новых, более чувствительных радиотелескопах, но и в огромном числе (порядка миллиона) конкретных объектов с нейтральным водородом, за которыми будет одновременно вестись наблюдение. Усреднение по всем им позволит резко уменьшить погрешность.

Оценки для эксперимента CHIME показывают, что за 10 лет работы можно будет зарегистрировать ускоренное расширение Вселенной на уровне статистической значимости 5 стандартных отклонений. Для проекта SKA речь уже идет о считанных годах. Стоит подчеркнуть, что это измерение не ограничивается одним лишь фактом наблюдения ускорения, а позволит еще и измерить в деталях, как оно зависит от красного смещения. Это значит, что откроется возможность напрямую проверять разные теоретические модели темной энергии, в том числе и экзотические модели гравитации. Иными словами, в арсенале космологов появится еще один мощный инструмент исследования.

Источник

Adblock
detector