Меню

Расширение вселенной началось примерно 14 млрд

Как люди узнали сколько Вселенной лет? Рассказываю за пару минут.

Прошли тысячи лет, прежде чем люди научились оценивать возраст Вселенной на основе научных исследований.

Измерение расстояния до различных галактик и скорости, с которой они удаляются друг от друга по мере расширения Вселенной, является одним из способов оценки возраста космоса.

Набрав сегодня в поисковой строке интернета вопрос: «Сколько лет Вселенной?». Мы за миллисекунды узнаем ответ, который долго искали многие мыслители человечества: Вселенной почти 14 миллиардов лет, а если быть точными — 13,8 миллиарда лет. Большинство учёных, исследующих космос, с этой цифрой согласны.

В конце декабря 2020 года исследователями, работающими на космологическом телескопе Атакама (ACT) в Чили , была опубликована уточнённая оценка возраста Вселенной — 13,77 миллиарда лет, плюс или минус несколько десятков миллионов лет. Эта оценка возраста совпадает с аналогичными данными наблюдений европейского спутника миссии Planck в период с 2009 по 2013 год.

Точные наблюдения ACT и Planck появились спустя более чем тысячелетия наблюдений людей за небом и размышлений о том, откуда всё могло появиться.

Каким же образом люди, с продолжительностью жизни менее века, получили представление о событиях, которые происходили до того, как их планета существовала?

Давайте проследим, как человечество пришло к пониманию возраста Вселенной.

Античность: Начало осмысления

В каждой культуре есть миф о сотворении мира. Вавилоняне, например, верили, что небо и Земля высечены из тела убитого Бога. Но лишь немногие системы верований указывают, когда началось существование (исключение составляет индуизм, который учит, что Вселенная меняется каждые 4,3 миллиарда лет, что не так уж далеко от фактического возраста Земли).

Главенствующая идея , застопорившая на западе развитие мысли о понимании вселенной, исходила от греческих философов и была в какой-то мере научным шагом назад.

В четвертом и третьем веках до нашей эры Платон, Аристотель и другие философы исходили из того, что планеты и звезды заключены в вечно вращающиеся небесные сферы.

В течение следующего тысячелетия или около того мало кто ожидал, что Вселенная вообще будет иметь возраст.

1600 — 1900 г.г.: Конец бесконечности

В 1610 году астроном Иоганнес Кеплер понял, что одна из главных не стыковок в популярной греческой космологии все это время была перед глазами звездочётов. Наблюдая за ночным небом, он задумался: если вечная Вселенная содержит бесконечное количество звезд, как многие привыкли считать, почему все эти звезды не наполняют вселенную ослепительным светом? Темное ночное небо, рассуждал он, наводит на мысль о конечном космосе, где звезды в конце концов исчезают.

Столкновение между ночным небом и бесконечной Вселенной стало известно как парадокс Ольбера, названный в честь Генриха Ольбера, астронома, который популяризировал его в 1826 году.

Ранняя версия современного решения бесконечной Вселенной пришла, прежде всего, от писателя Эдгара Аллана По.

Мы переживаем ночь — размышлял он в своей прозаической поэме «Эврика» в 1848 году, потому что Вселенная не вечна, она имеет начало, и с тех пор как она появилась, прошло слишком мало времени, чтобы звезды полностью осветили небо.

1900-е годы: Появляются современные и ранние вселенные

На разгадку парадокса Ольбера ушло некоторое время. Когда в 1917 году теория гравитации Эйнштейна подсказала ему, что Вселенная, вероятно, росла или сжималась с течением времени, он добавил в свои уравнения фактор выдумки — космологическую постоянную, чтобы Вселенная оставалась неподвижной (позволяя ей существовать вечно).

Тем временем, более крупные телескопы дали астрономам более чёткое представление о других галактиках. Но, в свою очередь, эти наблюдения вызвали ожесточенные споры о том, смотрят ли астрономы на далекие “островные вселенные” или на близлежащие звёздные скопления внутри Млечного Пути.

Острый взгляд Эдвина Хаббла разрешил этот спор в конце 1920-х годов. Он впервые измерил межгалактические расстояния и обнаружил, что галактики не только огромны и далеки друг от друга, но и удаляются друг от друга.

Вселенная расширялась, и Хаббл установил скорость ее расширения в 500 километров в секунду на мегапарсек, константу, которая теперь носит его имя. С пониманием расширения Вселенной астрономы получили мощный новый инструмент, чтобы оглянуться назад во времени и оценить, когда космос начал расти. Работа Хаббла в 1929 году показала, что Вселенная расширяется таким образом, что ей должно быть примерно 2 миллиарда лет.

«Скорость расширения говорит, как быстро можно перемотать историю Вселенной назад» — говорит Дэниел Скольник, космолог из Университета Дьюка.

Но измерение расстояний до далеких галактик — не всегда даёт точный результат. Более точный метод появился в 1965 году, когда исследователи обнаружили слабое потрескивание микроволн, идущих со всех сторон в космосе. Космологи уже предсказывали, что такой сигнал должен существовать, поскольку свет, испущенный всего через сотни тысяч лет после рождения Вселенной, был бы растянут расширением пространства на более длинные микроволны.

Читайте также:  Вселенная меня любит надпись

Измеряя характеристики этого космического микроволнового фона (CMB), астрономы могли бы сделать своего рода снимок молодой Вселенной, рассчитав ее ранние размеры и содержание. CMB послужил неопровержимым доказательством того, что космос имел начало.

” Самое важное, что было достигнуто в результате окончательного открытия [CMB] в 1965 году, — это заставить нас всех серьёзно отнестись к идее о существовании ранней Вселенной», — писал лауреат Нобелевской премии Стивен Вайнберг в своей книге 1977 года «первые три минуты».

Источник

Вселенной 14 миллиардов лет, как она может иметь ширину 92 миллиарда световых лет?

Когда мы смотрим в космос, мы не только смотрим на вещи, которые находятся далеко, мы глядя на вещи, которые существовали в прошлом.

Астрономы очень точно определили возраст Вселенной. Ей 13,7 миллиарда лет.

Но насколько велика видимая Вселенная?

Есть много сложных способов размышлять об этом, но давайте начнем с, пожалуй, самого очевидного. Когда Вселенная началась, она была наполнена светом, который затем путешествовал по космосу. И, если Вселенная возникла 13,7 миллиарда лет назад, а мы видим ее появление только сейчас, иными словами должно было пройти 13,7 миллиарда световых лет, прежде чем её «образ» попадём на Землю.

Момент, когда мы можем видеть начало нашей вселенной, астрономы называют космическим микроволновым фоновым излучением, и это самое старое, что мы когда-либо видели.

Свет ударяет по Земле со всех сторон и, по сути, является фотографией рождения Вселенной 13,7 миллиарда лет назад. Соответственно, было бы разумно сказать, что видимая Вселенная состоит из сферы, с центром на Земле с радиусом 13,7 миллиарда световых лет.
Только вот это совершенно не верно.

Случился Большой взрыв . Вселенная расширяется, и раньше она расширялась намного быстрее, чем сейчас.

Я не хочу слишком углубляться в детали Большого взрыва, но все сводится к следующему, к идее, что Вселенная когда-то была меньше и горячее.

Мы начнем с представления, как выглядела Вселенная, когда это микроволновое фоновое излучение было выпущено.

Простым языком, зарождение вселенной, можно описать так: везде было жарко и в один случайный момент в одной из точек «пустоты» появилась сфера, эта сфера была происхождением космического микроволнового фона, приходящего сейчас на Землю. Это излучение двигалось к Земле со скоростью света, и потребовалось 13,7 миллиарда, чтобы оно добралось до Земли.

Когда этот свет испускался вскоре после Большого взрыва, радиус этой сферы составлял около 42 миллионов световых лет.

Наивно, можно было предположить, что этому свету понадобилось 42 миллиона лет, чтобы добраться сюда, но на то, чтобы добраться до Земли, потребовалось 13,7 миллиарда лет.

И причина того, что это заняло так много времени, в том, что пространство расширялось и расширяется .

Это означает, что пространство между этой сферой и местоположением Земли должно было расширяться довольно быстро. Иначе свет давно бы прошел мимо Земли. Я имею в виду, что это было всего 42 миллиона световых лет, а прошло почти 14 миллиардов лет. Так что сфера, из которой изначально излучались микроволны, также увеличилась в размерах.

В настоящее время вокруг Земли существует сфера радиусом около 15 миллиардов световых лет. Объекты, которые сейчас находятся за пределами этой сферы мы никогда не увидим, как они выглядят сейчас, сколько бы мы ни ждали.

В настоящее время мы можем видеть объекты на расстоянии 46 миллиардов световых лет, но мы видим их такими, какими они были в далеком прошлом.

И из-за расширения становится еще хуже. Это означает, что мы постоянно теряем звезды, которые видим.

Действительно, мы теряем около 20 000 звезд в секунду.
Итак, есть звезды, излучающие фотоны в этот момент, которые мы в конечном итоге увидим, но фотоны, которые они испустили в этот немного более поздний момент — мы никогда не увидим.

Наша видимая Вселенная имеет радиус около 46 миллиардов световых лет, хотя это всего лишь 13,7 миллиарда лет. Но мы не видим эту далекую точку, как сейчас, в данный момент, а ту точку, которая была после того, когда зародилась вселенная.

Если Вам понравилась данная статья, то поделитесь ей в социальных сетях, поставьте мне нравится или подпишитесь на канал!

Источник

Как и куда расширяется вселенная?

Я думаю многие слышали о том, что Вселенная расширяется. У моих читателей возникает множество вопросов связанных с этим. В этой статье я постарался ответить на наиболее типичные из них.

Как работает расширение вселенной?

Когда мы смотрим на отдаленные объекты, мы можем заметить, что они отдаляются от нас, при этом чем дальше от нас находится объект, тем быстрее он отдаляется. К примеру объекты находящиеся от нас на расстоянии 13.8 миллиардов световых лет ( сфера Хаббла ) отдаляются от нас со скоростью света, а объекты находящиеся еще дальше – отдаляются быстрее скорости света!

Читайте также:  Путешествие по вселенной для детей

Казалось бы происходит нарушение теории относительности, которая запрещает сверхсветовое движение, но на самом деле это не так. Так отдаленные галактики отдаляются от нас не за счет собственного движения, а за счет того, что между нами и ними пространство расширяется настолько быстро, что для расстояние увеличивается быстрее скорости света.

Почему отдаленные галактики удаляются быстрее?

Потому, что пространство расширяется везде и повсеместно равномерно во всех точках. К примеру если во вселенной каждый метр пространства увеличится на 1 сантиметр за 1 секунду, то тогда объекты расположенные на расстоянии 1 километр друг от друга отдалятся за 1 секунду друг от друга на 10 метров. А на расстоянии 100 километров — на 1000 метров. А на расстоянии 1000 километров — на 10 000 метров и так далее — чем больше расстояние между объектами, тем больше пространства между ними возникает за единицу времени.

Почему все галактики удаляется от нас? Значит ли это, что мы находимся в центре расширения? В центре вселенной? Нет, не значит. Так как пространство расширяется повсеместно и равномерно то какую бы галактику вы не выбрали, как точку обзора, из нее все будет выглядеть так, как будто это она находится в центре расширения, но по сути никакого центра расширения просто нет.

На расстоянии примерно 46.5 миллиардов световых лет находится граница наблюдаемой вселенной. Все что находится за ней мы никогда не сможем увидеть. Просто потому, что фотоны испущенные объектами находящимися за границей наблюдаемой вселенной никогда не достигнут нас — пространство между ними и нами будет возникать быстрее, чем фотоны будут успевать преодолевать его. Это расстояние еще называют горизонтом частиц .

Куда расширяется вселенная?

Теперь возникает следующий вопрос – куда же расширяется вселенная? Ответ на него донельзя прозаичен – никуда. Все дело в том, что вселенная бесконечна и не имеет границ. Более того вселенная всегда была бесконечна, даже в момент Большого Взрыва. Когда физик или астроном говорит, что в момент большого взрыва вселенная была сжата до микроскопического размера речь идет о размерах наблюдаемой вселенной, а не всей вселенной.

Источник

Спросите Итана: откуда нам известно, что Вселенной 13,8 млрд лет?

Вы уже наверняка слышали, что Вселенная началась с Большого взрыва 13,8 млрд лет назад, и сформировала атомы, звёзды, галактики, и, наконец, планеты с нужным для появления жизни составом. Заглядывая в отдалённые места Вселенной, мы также заглядываем и назад во времени, и каким-то образом, благодаря возможностям физики и астрономии, мы вычислили не только, как началась Вселенная, но и её возраст. Но откуда нам известно, сколько ей лет? Именно такой вопрос и задаёт нам читатель:

Итан, как подсчитали это число в 13,8 млрд лет? (Только объясни понятным языком, пожалуйста!)

На самом деле есть два разных, независимых метода измерения этой величины, и хотя один из них гораздо точнее другого, в менее точном используется гораздо меньше предположений.

Более точный метод предлагает подумать о том, что Вселенная расширяется и охлаждается, а значит, в прошлом она была горячее и плотнее. Если возвращаться назад во времени, мы обнаружим, что в меньшей по объёму Вселенной не только вся материя располагалась ближе друг к другу, но и длины волн всех фотонов были короче, поскольку расширение Вселенной растянуло их до сегодняшнего состояния.

Поскольку длина волны фотона определяет его энергию и температуру, коротковолновый фотон более энергичен и горяч. Чем дальше мы будем возвращаться во времени, тем выше будет температура, пока в какой-то момент мы не достигнем самых ранних этапов Большого взрыва. Важно: у горячего Большого взрыва был этап, который можно назвать самым ранним!

Если мы будем вести экстраполяцию в прошлое бесконечно, то достигнем сингулярности, в которой физика перестаёт работать. С нашим современным пониманием раннего состояния Вселенной мы знаем, что горячему и плотному Большому взрыву предшествовало состояние инфляции, и её длительность была неопределённой. Когда мы говорим о возрасте Вселенной, мы говорим о том, сколько времени прошло с тех пор, когда Вселенную впервые можно было описывать через горячий Большой взрыв.

По законам Общей теории относительности, в такой Вселенной, как наша:

• с одинаковой плотностью на крупнейших масштабах,
• с одинаковыми законами и свойствами во всех местах,
• одинаковой по всем направлениям,
• с Большим взрывом, случившимся во всех местах одновременно,

Читайте также:  Наша вселенная огромная черная дыра

существует уникальная связь между возрастом Вселенной и её расширением в течение жизни.

Иначе говоря, если мы сможем измерить, как Вселенная расширяется сегодня, и как она расширялась в течение жизни, мы точно вычислим, из каких компонентов она состоит. Нам это известно из множества различных наблюдений, а именно:

• Из прямых измерений яркости и расстояний до таких объектов Вселенной, как звёзды, галактики и сверхновые, которые позволяют нам построить космическую лестницу расстояний.
• Из измерений крупномасштабных структур, скоплений галактик и барионных акустических осцилляций.
• Из флуктуаций в фоновом излучении, в «фотографии» Вселенной, сделанной, когда ей было 380 000 лет.

Объединив всё это, мы получим Вселенную, в настоящий момент состоящую на 68% из тёмной энергии, на 27% из тёмной материи, на 4,9% из нормальной материи, на 0,1% из нейтрино, на 0,01% из излучения, и, в общем-то, всё. Но если добавить сегодняшние особенности расширения Вселенной, это можно экстраполировать назад и узнать всю историю расширения, и, следовательно, возраст Вселенной.

Получившееся число – точнее всего нам даёт его эксперимент Планк, но вносят свои коррективы и другие источники, вроде измерений сверхновых, телескоп Хаббла и Слоановский небесный цифровой обзор – оказывается равным 13,81 млрд лет, с погрешностью всего в 120 млн лет. Это значит, что в возрасте Вселенной мы уверены на 99,1%, что удивительно точно!

Да, различных данных, указывающих на это число, у нас много, но на самом деле это один метод. Нам просто повезло, что существует непротиворечивая картинка, на которую указывают все данные, но каждого из этих ограничений по отдельности недостаточно, чтобы сказать: «Вселенная именно такая». Вместо этого все они предлагают набор возможностей, и о том, где мы живём, говорит место их пересечений.

Если бы у Вселенной сегодня были абсолютно те же свойства, но она состояла бы на 100% из нормальной материи, без тёмной материи и тёмной энергии, то ей было бы всего 10 млрд лет. Если бы во Вселенной было 5% нормальной материи (без тёмной материи и тёмной энергии), а константа Хаббла равнялась бы 50 км/с/Мпс вместо 70км/с/Мпс, то Вселенной было бы 16 млрд лет. Но, комбинируя все известные данные, мы с уверенностью можем заявить, что 13,81 млрд лет – это возраст Вселенной с небольшой погрешностью. Это удивительное достижение науки.

И всё это в целом даёт один метод. Это главный, лучший, наиполнейший метод, с огромным количеством различных доказательств. Но есть и ещё один факт, удивительно полезный для проверки наших результатов.


Мерцание звёзд – доказательство их переменчивости из-за уникального отношения периода мерцания к яркости.

Это факт нашего понимания того, как звёзды живут, сжигают своё топливо и умирают. Конкретнее, мы знаем, что у всех звёзд, когда они живы и сжигают своё главное топливо (синтезируют гелий из водорода), есть определённая яркость и цвет, и они сохраняют эти яркость и цвет определённый промежуток времени: пока в их ядрах не начинает заканчиваться горючее.

В этот момент яркие, голубые и более массивные звёзды начинают «выключаться» из главной последовательности (кривой на диаграмме цвета и величины), превращаясь в гигантов и/или сверхгигантов.

Посмотрев, где находится эта точка «выключения» для скопления звёзд, появившихся примерно в одно и то же время, мы можем подсчитать – зная, как работают звёзды – сколько лет звёздам в кластере. Рассматривая самые старые шаровые скопления, где содержится меньше всего тяжёлых элементов, и чьи выключения случаются со звёздами наименьшей массы, мы обнаруживаем, что их возраст весьма последовательно оказывается равным 13,2 млрд лет, но не более того (имейте в виду, что в этом случае погрешность довольно велика, порядка миллиарда лет).


Возраст самых древних из известных шаровых скоплений подходит к 95% возраста Вселенной.

Довольно часто встречается возраст в 12 млрд лет, но возрасты порядка 14 млрд лет и более не встречаются никогда, хотя в 1990-х часто упоминали о возрастах в 14-16 млрд лет. Улучшение понимания работы звёзд и их эволюции снизило эти цифры.

В общем, у нас есть два метода – один из космической истории, а второй – из измерения локальных звёзд – показывающих, что возраст нашей Вселенной находится в промежутке от 13 до 14 млрд лет. Никого бы не удивило, если бы нам оказалось 13,6 млрд или 14,0 млрд, но можно с большой точностью заявить, что нам не 13,0 или 15,0 млрд лет. Говорите с уверенностью, что нам 13,8 млрд лет – теперь вы знаете, как мы это подсчитали!

Источник

Adblock
detector