Расширение Вселенной
Космология |
Изучаемые объекты и процессы |
|
Наблюдаемые процессы |
|
Теоретические изыскания |
|
Расширение Вселенной — явление, состоящее в почти однородном и изотропном расширении космического пространства в масштабах всей Вселенной. Экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Началом расширения Вселенной наука считает так называемый Большой взрыв. Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и изотропности Вселенной.
Содержание
Расширение Вселенной в различных моделях
Ускорение расширения Вселенной
Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia [1] [2] . За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шоу по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.
Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было найдено, что во Вселенной существует ранее неизвестная энергия с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».
По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).
Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света. Это не является нарушением специальной теории относительности. На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется. Земля, Солнечная система, наша Галактика, и наше Сверхскопление будут видны друг другу и в принципе достижимы путём космических полётов, в то время как вся остальная Вселенная исчезнет вдали. Со временем наше Сверхскопление придёт в состояние тепловой смерти, то есть осуществится сценарий, предполагавшийся для предыдущей, плоской модели Вселенной с преобладанием материи.
Существуют и более экзотические гипотезы о будущем Вселенной. Одна из них предполагает, что фантомная энергия приведёт к т. н. «расходящемуся» расширению. Это подразумевает, что расширяющая сила действия тёмной энергии продолжит неограниченно увеличиваться, пока не превзойдёт все остальные силы во Вселенной. По этому сценарию, тёмная энергия со временем разорвёт все гравитационно связанные структуры Вселенной, затем превзойдёт силы электростатических и внутриядерных взаимодействий, разорвёт атомы, ядра и нуклоны и уничтожит Вселенную в Большом Разрыве.
С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому Хлопку». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого Взрыва) должны сыграть точные измерения темпа ускорения.
См. также
Примечания
- ↑ Riess, A. et al. 1998, Astronomical Journal, 116, 1009
- ↑ Perlmutter, S. et al. 1999, Astrophysical Journal, 517, 565
Литература
- Ian Steer Who discovered Universe expansion?. — 2012. — arΧiv:1212.1359
Wikimedia Foundation . 2010 .
Смотреть что такое «Расширение Вселенной» в других словарях:
расширение Вселенной — visatos plėtimasis statusas T sritis fizika atitikmenys: angl. cosmic expansion; expansion of the universe vok. Ausdehnung des Weltalls, f; Expansion des Weltalls, f rus. космическое расширение, n; расширение Вселенной, n pranc. expansion… … Fizikos terminų žodynas
Расширение Вселенной — наблюдаемое явление увеличения расстояний между галактиками со скоростью, пропорциональной расстоянию между ними … Астрономический словарь
Расширение — Расширение: Расширение имени файла: Список расширений имени файла Расширение (ПО): Расширение (Mozilla) Список расширений Firefox Расширения (Opera) Дополнение (компьютерные игры) Расширение поля Расширение Вселенной Тепловое расширение… … Википедия
Метрическое расширение космоса — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование галактик … Википедия
Инфляционная модель Вселенной — Космология Изучаемые объекты и процессы … Википедия
Форма Вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование … Википедия
КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ — значение плотности вещества во Вселенной, определяемое выражением где Н постоянная Хаббла (см. Хаббла закон), G постоянная тяготения Ньютона. В однородных изотропных моделях Вселенной (см. Космологические модели )с равной нулю космологической… … Физическая энциклопедия
Тонкая настройка Вселенной — Проверить нейтральность. На странице обсуждения должны быть подробности … Википедия
КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ — плотн. в ва во Вселенной, определяющая геом. свойства пространства в космологич. моделях, построенных на основе общей теории относительности. Определяется выражением: р = = ЗН2/(8п(пи)С), где Н постоянная Хаббла, С гравитац. постоянная;… … Естествознание. Энциклопедический словарь
История развития представлений о Вселенной — С ранних времен человек задумывался об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по разному. Так, в Вавилоне жизнь на Земле тесно связывали с движением звезд , а в Китае идеи гармонии… … Википедия
Источник
Теория расширяющейся вселенной
Теория расширяющейся Вселенной
Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной – так называемой теории «большого взрыва». В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну «точку», имевшую необычайно высокую температуру, а затем эта «точка» взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь.
При этом расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.
Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований.
Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете — на всю Вселенную.
Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии.
Возникновение современной космологии связано с созданием релятивистской теории тяготения — общей теории относительности Эйнштейном (1916).
Из уравнений Эйнштейна общей теории относительности следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии).
Применив общую теорию относительности ко Вселенной в целом, Эйншейн обнаружил, что такого решения уравнений, которому бы соответствовала не меняющаяся со временем Вселенная, не существует.
Однако Эйнштейн представлял себе Вселенную как стационарную. Поэтому он ввел в полученные уравнения дополнительное слагаемое, обеспечивающее стационарность Вселенной.
В начале 20-х годов советский математик А.А.Фридман впервые решил уравнения общей теории относительности применительно ко всей Вселенной, не накладывая условия стационарности.
Он показал, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься.
Полученные Фридманом уравнения лежат в основе современной космологии.
В 1929 году американский астроном Э.Хаббл опубликовал статью «Связь между расстоянием и лучевой скоростью внегалактических туманностей», в которой пришел к выводу: «Далекие галактики уходят от нас со скоростью, пропорциональной удаленности от нас.
Чем дальше галактика, тем больше ее скорость» (коэффициент пропорциональности получил название постоянной Хаббла).
Этот вывод Хаббл получил на основе эмпирического установления определенного физического эффекта — красного смещения, т.е.
увеличения длин волн линий в спектре источника (смещения линий в сторону красной части спектра) по сравнению с линиями эталонных спектров, обусловленного эффектом Допплера, в спектрах галактик.
Открытие Хабблом эффекта красного смещения, разбегания галактик лежит в основе концепции расширяющейся Вселенной.
В соответствии с современными космологическими концепциями, Вселенная расширяется, но центр расширения отсутствует: из любой точки Вселенной картина расширения будет представляться той же самой, а именно, все галактики будут иметь красное смещение, пропорциональные расстоянию до них.
Само пространство как бы раздувается.
Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем из-за сил гравитации.
Одна из самых больших проблем, стоящих перед сторонниками теории «большого взрыва», как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически.
Согласно базовым теориям «большого взрыва», первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название «феномена».
Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема «феномена» обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о «феномене» говорят как о вещи, недопустимой с научной точки зрения, Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р.Эллис, профессор математики университета в Кейптауне, в своей книге «Длинная шкала структуры пространство-время» указывают: «Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад.
Однако отправной пункт теории возникновения Вселенной – так называемый «феномен» – находится за гранью известных законов физики».
Как открывали расширение Вселенной
Тогда приходится признать, что во имя обоснования «феномена», этого краеугольного камня теории «большого взрыва», необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.
«Феномен», как и любой другой отправной пункт «начала Вселенной», включающий в себя что-то, что невозможно описать научными категориями, остается открытым вопросом.
Однако возникает следующий вопрос: откуда появился сам «феномен», как он образовался? Ведь проблема «феномена» – это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами – если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности «феномена», то все равно останется вопрос: как образовалась Вселенная?
В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию «пульсирующей Вселенной».
По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о «начале мира».
Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации.
Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге «Первые три минуты» указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций.
Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, «пульсирующая Вселенная» имеет конец, а значит, имеет и начало.
В 2011 году нобелевская премия по физике была присуждена участнику проекта Supernova Cosmology Саулу Перлмуттеру из Национальной лаборатории Лоренса Беркли, а также членам исследовательской группы High-z Supernova Брайану П.
Шмидту из Австралийского национального университета и Адаму Г. Риссу из Университета Джонса Хопкинса.
Трое ученых разделили премию за открытие ускорения расширения Вселенной путем наблюдения далеких сверхновых звезд. Они изучали особый вид сверхновых типа Ia.
Это взорвавшиеся старые компактные звезды тяжелее Солнца, но размером с Землю. Одна такая сверхновая может излучать столько света, сколько целая звездная плеяда. Двум группам исследователей удалось обнаружить более 50 далеких сверхновых Ia, чей свет оказался слабее, чем ожидалось.
Это было доказательством того, что расширение Вселенной ускоряется. Исследование неоднократно натыкалось на загадки и сложные проблемы, однако, в конце концов, обе команды ученых пришли к одинаковым заключениям об ускорении расширения Вселенной.
Это открытие на самом деле удивительно.
Нам уже известно, что после Большого взрыва около 14 миллиардов лет назад Вселенная начала расширяться. Тем не менее, открытие того, что это расширение ускоряется, поразило самих первооткрывателей.
Причину загадочного ускорения приписывают гипотетической темной энергии, которая составляет по расчетам примерно три четверти Вселенной, но до сих пор остается самой большой загадкой современной физики.
Астрономия
Тестирование онлайн
материал из книги Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени»
Эффект Доплера
В 1920-е годы, когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции.
Физикам смещение цвета или частоты известно как эффект Доплера.
Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля.
Расширяющаяся Вселенная
Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.
Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте.
Это означает, что длины приходящих к нам волн становятся меньше, а их частота – выше. И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота – ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.
Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается.
При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.
Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала.
Свет представляет собой колебания, или волны, электромагнитного поля. Длина волны видимого света чрезвычайно мала – от сорока до восьмидесяти миллионных долей метра. Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую – относящиеся к синему концу.
Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.
Расширение Вселенной
Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров.
В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение – почти все звездные системы удаляются от нас!
Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 году: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее.
В действительности она расширяется: расстояние между галактиками постоянно растет.
Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию.
Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.
Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли.
При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.
В 1965 году два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью-Джерси, отлаживали очень чувствительный микроволновый приемник.
(Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из-за пределов Солнечной системы и даже из-за пределов Галактики.
Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример о том, что Вселенная одинакова во всех направлениях.
Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами.
Они изучали предположение Георгия (Джорджа) Гамова о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое.
Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его.
За эту находку Пензиас и Вильсон были в 1978 году удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).
На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое-то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной.
Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики.
Все галактики удаляются друг от друга.
Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения.
Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду.
Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду.
С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду. Скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними.
Тем самым красное смещение галактики должно быть прямо пропорционально ее удаленности от нас – это та самая зависимость, которую позднее обнаружил Хаббл. Российскому физику и математику Александру Фридману в 1922 году удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 году аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.
Вследствие расширения Вселенной галактики удаляются друг от друга.
С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре.
Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.
Три типа расширения Вселенной
Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его.
После этого галактики начинают сближаться, а Вселенная – сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.
Удивительная особенность первой модели Фридмана – то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ.
Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь.
В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути.
Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности). Во второй модели Фридмана пространство также искривлено, но иным образом.
И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).
Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?
Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей – наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства).
Чем выше текущая скорость расширения, тем большая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана.
Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно – как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его.
Этот сценарий соответствует третьей модели Фридмана.
Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера.
Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.
Но это далеко не все.
Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути.
Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик.
Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.
Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность.
Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.
За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все-таки плоская (как в третьей модели Фридмана)!
Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции – темной энергии.
И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, а ускоряется.
Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества – высокой или низкой плотности – может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения – это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва.
Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все-таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).
Ошибка Эйнштейна
Расширение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия.
Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 году внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.
Космологическая постоянная проявлялась как действие некой новой силы – «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства-времени.
Под влиянием этой силы пространство-время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.
Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой».
Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.
Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим.
Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 году, за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!
Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания.
Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!
ВСЕЛЕННАЯ (от греч. «ойкумена» – населенная, обитаемая земля) – «все существующее», «всеобъемлющее мировое целое», «тотальность всех вещей»; смысл этих терминов многозначен и определяется концептуальным контекстом.
Можно выделить по крайней мере три уровня понятия «Вселенная».
1. Вселенная как философская идея имеет смысл, близкий понятию «универсум», или «мир»: «материальный мир», «сотворенное бытие» и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.
2. Вселенная в физической космологии, или Вселенная как целое, – объект космологических экстраполяций.
В традиционном смысле – всеобъемлющая, неограниченная и принципиально единственная физическая система («Вселенная издана в одном экземпляре» – А.Пуанкаре); материальный мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала.
Такое понимание Вселенной как целого обосновывалось по-разному: 1) ссылкой на «презумпцию экстраполи-руемости»: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически – Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала образ Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной.
Общепринято, что бесконечная гомогенная Вселенная Ньютона «разрушила» античный космос. Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга.
Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.
В неклассической, релятивистской космологии была впервые построена теория Вселенной.
Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т.е.
имела начало. А.А.Фридман считал, что мир, или Вселенная как объект космологии, «бесконечно уже и меньше мира-вселенной философа». Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный момент расширения Метагалактики рассматривался как абсолютное «начало всего», с креационистской точки зрения – как «сотворение мира». Некоторые космологи-релятивисты, считая принцип единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику – лишь как ограниченную часть Вселенной.
Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира.
В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился антропный принципв космологии.
Источник