Фотосинтез
Поперечный срез листа
1. О том, что мы будем изучать
Сохранение жизни зависит от способности организмов использовать различные источники энергии. Какие же источники энергии используют живые организмы?
(Можно предоставить учащимся дать ответ на этот вопрос. Как правило, ответы бывают довольно разнообразные, их лучше записать на доске.)
При всем своем разнообразии организмы используют в основном два источника энергии: энергию химических связей органических веществ и энергию солнечного света.
(Здесь нужно вернуться к ответам учащихся, записанным на доске, и распределить их на две группы в соответствии с источником энергии. Необходимо упомянуть, что есть особая группа живых организмов, которые используют в качестве источника энергии химические связи неорганических веществ. Учащиеся могут сами назвать некоторые из организмов, относящихся к этой группе.)
Вопросы учащимся
1. Какие организмы используют энергию солнца и как они называются?
2. Как называются организмы, которые используют энергию химических связей органических веществ, и кто к ним относится?
Организмы, которые используют энергию органических веществ (совокупность всех органических веществ, используемых организмом, называется пищей), называются органотрофами. Все остальные организмы называют литотрофами. Эти названия для нас новые, однако обозначаемые этими терминами организмы нам хорошо знакомы: литотрофы относятся к автотрофам, а органотрофы – это гетеротрофы.
Автотрофные организмы используют для питания соединения, не представляющие энергетической ценности, такие как предельные окислы углерода (СО2) или водорода (Н2О), поэтому они нуждаются в дополнительном источнике энергии. Этим источником энергии для большинства автотрофных организмов является солнечный свет.
Автотрофные организмы испльзуют СО2 в качестве единственного или главного источника углерода и обладают как системой ферментов для ассимиляции СО2 , так и способностью синтезировать все компоненты клетки. Автотрофы делятся на две группы:
– фотоавтотрофы – зеленые растения, водоросли, бактерии, способные к фотосинтезу;
– хемоавтотрофы – бактерии, использующие окисление неорганических веществ (водород, сера, аммиак, нитраты, сероводород и др.). К ним относятся, например, водородные бактерии, нитрифицирующие бактерии, железобактерии, серобактерии, метанобразующие бактерии.
Мы будем рассматривать только фотоавтотрофные организмы.
Можно предложить учащимся подготовить доклады или рефераты о хемоавтотрофах.
Поглощенный солнечный свет используется фотоавтотрофами для синтеза органических веществ. Поэтому можно дать следующее определение фотосинтеза.
Фотосинтез – это процесс преобразования поглощенной энергии света в химическую энергию органических соединений.
Фотосинтез – единственный процесс в биосфере, ведущий к увеличению энергии биосферы за счет внешнего источника – Солнца – и обеспечивающий существование как растений, так и практически всех гетеротрофных организмов.
2. Немного истории
Началом эры исследования фотосинтеза можно считать 1771 г., когда английский ученый Д.Пристли поставил классические опыты с растением мяты. Он помещал мяту под стеклянный колпак, под которым до того горела свеча. При этом «испорченный» горением свечи воздух становился пригодным для дыхания. Определяли это следующим образом. В одном случае под стеклянный колпак вместе с растением помещали мышь, в другом, для сравнения, – только мышь. Через некоторое время под вторым колпаком животное погибало, а под первым продолжало нормально себя чувствовать (рис. 1).
Рис. 1. Опыт Пристли. А – свеча, горящая в закрытом сосуде, через некоторое время гаснет. Б – мышь погибает, если оставить ее в закрытом сосуде. В – если вместе с мышью поместить в сосуд растение, то мышь не погибнет
Благодаря этим и другим опытам Д.Пристли в 1774 г. открыл кислород (одновременно с К.В. Шееле). Название этому газу дал французский ученый А.Л. Лавуазье, повторивший открытие год спустя. Дальнейшее изучение растений показало, что в темноте они, как и другие живые существа, выделяют не пригодный для дыхания газ СО2.
В 1782 г. Жан Сенебье показал, что растения, выделяя кислород, одновременно поглощают двуокись углерода. Это позволило ему предположить, что в вещество растения превращается углерод, входящий в состав двуокиси углерода.
Австрийский врач Ян Ингенхауз обнаружил, что растения выделяют кислород только на свету. Он погружал ветку ивы в воду и наблюдал на свету образование на листьях пузырьков кислорода. Если листья находились в темноте, пузырьки не появлялись.
Дальнейшие опыты показали, что органическая масса растения формируется не только за счет углекислого газа, но и за счет воды. Обобщая результаты перечисленных опытов, немецкий ученый В.Пфеффер в 1877 г. дал описание процесса поглощения СО2 из воздуха при участии воды и света с образованием органического вещества и назвал его фотосинтезом.
Большую роль в выявлении сущности фотосинтеза сыграло открытие закона сохранения и превращения энергии Ю.Р. Майером и Г.Гельмгольцем.
Для развития межпредметных связей рекомендуется, чтобы ученики дома письменно ответили на вопрос: почему открытие закона сохранения и превращения энергии имело большое значение для выявления сущности фотосинтеза?
Для дальнейшего изучения фотосинтеза, как показывает наш опыт, необходимо, чтобы учащиеся вспомнили материал по следующим вопросам из химии и физики (повторение материала можно дать как домашнее задание):
– строение атома;
– виды орбиталей;
– энергетические уровни;
– окислительно-восстановительные реакции.
Дальнейшее изучение фотосинтеза строится по следующему плану:
– физико-химические основы фотосинтеза;
– состав и строение фотосинтетического аппарата;
– фазы и процессы фотосинтеза;
– виды фотосинтеза.
3. Физико-химические основы фотосинтеза
В общих чертах физико-химическую суть фотосинтеза можно описать следующим образом.
Молекула хлорофилла поглощает квант света и переходит в возбужденное состояние, характеризующееся электронной структурой с повышенной энергией и способностью легко отдавать электрон. Такой электрон можно сравнить с камнем, поднятым на высоту, – он также приобретает дополнительную потенциальную энергию. Электрон, как по ступеням, перемещается по цепочке сложных органических соединений, встроенных в мембраны хлоропласта. Эти соединения отличаются друг от друга своими окислительно-восстановительными потенциалами, которые к концу цепи повышаются. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ.
Растративший свою энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает молекулу хлорофилла. Электрон снова проходит по тому же пути, расходуя свою энергию на образование новых молекул АТФ, и весь цикл повторяется.
В этом описании выделены ключевые понятия, разбор которых поможет учащимся глубже понять суть процесса фотосинтеза.
Что же представляет собой главный «герой» фотосинтеза – квант света? Солнечный свет – это электромагнитные волны, распространяющиеся в вакууме с максимально возможной скоростью (с). Электромагнитное излучение характеризуется длиной волны, амплитудой и частотой. Свойства электромагнитного излучения сильно зависят от длины волны (рис. 2).
Рис. 2. Шкала электромагнитного излучения. Ангстрем – единица длины, равная 10-8 смм
Видимый свет занимает очень маленькую часть электромагнитного спектра, но именно ее используют растения для фотосинтеза.
Электромагнитные волны излучаются и поглощаются не непрерывно, а отдельными порциями – квантами (фотонами). Каждый квант света несет определенное количество энергии, которая находится в обратной зависимости от длины волны :
Е=hc/,
т.е. чем больше длина волны, тем меньше энергия кванта (h – постоянная Планка).
От длины волны зависит не только энергия кванта, но и его цвет (рис. 2).
Попадая на какую-либо поверхность, квант света отдает ей свою энергию, в результате чего поверхность нагревается. Но в некоторых случаях при поглощении кванта света молекулой его энергия не сразу превращается в тепло и может привести к различным изменениям внутри молекулы. Например, под действием света происходит фотолиз воды:
т.е. вода диссоциирует на ион водорода и ион гидроксила. Затем ион гидроксила теряет свой электрон, и радикалы гидроксила образуют воду и кислород:
Что же происходит в молекуле под действием кванта света? Чтобы ответить на этот вопрос, надо вспомнить строение атома. В атоме электроны находятся на различных орбиталях и обладают различной энергией (рис. 3).
Рис. 3. Диаграмма энергетических уровней электронных оболочек
Энергия поглощенного кванта света в атоме или молекуле передается электрону. За счет этой дополнительной энергии он может перейти на другой, более высокий энергетический уровень, оставаясь по-прежнему в молекуле. Такое состояние атома или молекулы называют возбужденным. Молекула в возбужденном состоянии нестабильна – она «стремится» отдать лишнюю энергию и перейти в стабильное состояние с наименьшей энергией. От избытка энергии молекула может избавиться разными путями: изменением спина электрона, выделением тепла, флуоресценцией, фосфоресценцией. Если энергия кванта слишком велика, возможно «выбивание» электрона из молекулы, которая превращается в катион.
Вернемся к фотосинтезу. Следующим «героем» фотосинтеза является молекула хлорофилла, основная функция которой состоит в поглощении кванта света (рис. 4).
Рис. 4. Строение молекулы хлорофилла
Хлорофилл – зеленый пигмент. Основу молекулы составляет Мg-порфириновый комплекс, состоящий из четырех пирольных колец. Пирольные кольца в молекуле хлорофилла образуют систему сопряженных связей. Такая структура облегчает поглощение кванта света и передачи энергии света электрону хлорофилла.
Существует несколько типов хлорофиллов, различающихся строением, а следовательно, и спектрами поглощения. Все растения имеют два вида хлорофилла: основной, присутствует у всех растений, это хлорофил a и дополнительный, который у разных растений разный: у высших растений и зеленых водорослей это хлорофилл b, у бурых и диатомовых – хлорофилл с, у красных водорослей – хлорофилл d. У фототрофных бактерий присутствует аналог хлорофилла – бактериохлорофилл.
Кроме хлорофилла, в растениях присутствуют и другие пигменты. К желтым пигментам, каротиноидам, относятся оранжевые или красные пигменты – каротины, желтые – ксантофиллы. На фоне хлорофилла каротиноиды в листе не заметны, но осенью после разрушения хлорофилла придают листьям желтую и красную окраску. Как и хлорофилл, каротиноиды принимают участие в поглощении света при фотосинтезе, но хлорофилл является основным пигментом, а каротиноиды – дополнительными. Каротиноиды выполняют роль стабилизаторов фотосинтеза, защищая хлорофилл от самоокисления и разрушения.
Все пигменты, участвующие в фотосинтезе, находятся в специальных органоидах растительной клетки – хлоропластах.
4. Состав и строение фотосинтетического аппарата
Перед изучением этого раздела рекомендуется дать домашнее задание на повторение строения листа.
Хлоропласты являются внутриклеточными двумембранными органоидами, в которых осуществляется фотосинтез.
У высших растений хлоропласты находятся преимущественно в клетках палисадной и губчатой тканей мезофилла листа. Они присутствуют также в замыкающих клетках устьиц эпидермиса листьев.
Хлоропласты сосудистых растений имеют форму двояковыпуклой, плоско-выпуклой или вогнуто-выпуклой линзы с круглым или эллипсоидным контуром. Внутренняя структура всех хлоропластов (рис. 5) характеризуется наличием системы мембран, называемых также ламеллами, погруженных в гидрофильный белковый матрикс, или строму.
Рис. 5. Строение хлоропласта
Основной субъединицей этой мембранной структуры является тилакоид – пузырек, образованный одинарной мембраной (рис. 6).
Рис. 6. Часть тилакоидной системы
Хлоропласты зрелых клеток имеют максимально развитую тилакоидную систему. Ее структура в хлоропластах разных растений различна и связана главным образом с отношением данного вида растений к свету: хлоропласты светолюбивых растений содержат много мелких гран, хлоропласты теневыносливых – меньшее количество гран, но крупных.
В клетке хлоропласты постоянно перемещаются с током цитоплазмы или самостоятельно, ориентируясь по отношению к свету. Если падающий на лист поток света имеет высокую интенсивность, то хлоропласты располагаются вдоль световых лучей и занимают боковые стенки клеток. Если свет слабый, то хлоропласты ориентируются перпендикулярно световому потоку, тем самым увеличивая площадь поглощения света. Это проявление фототаксиса у хлоропластов.
Источник
§ 11. Фотосинтез. Преобразование энергии света в энергию химических связей
Первые клетки, способные использовать энергию солнечного света, появились на Земле примерно 4 млрд лет тому назад в архейскую эру. Это были цианобактерии (от греч. «цианос» — синий). Их окаменелые остатки были найдены в слоях сланцев, относящихся к этому периоду в истории Земли. Потребовалось еще около 1,5 млрд лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток.
Очевидно, что роль растений и иных фотосинтезирующих организмов в развитии и поддержании жизни на нашей планете исключительно велика: они превращают энергию солнечного света в энергию химических связей органических соединений, которая далее используется всеми остальными живыми существами; они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения таким способом запасенной в них химической энергии аэробными клетками; наконец, определенные виды растений в симбиозе с азотфиксирующими бактериями вводят газообразный азот атмосферы в состав молекул аммиака, его солей и органических азотсодержащих соединений.
Роль зеленых растений в планетарной жизни трудно переоценить. Сохранение и расширение зеленого покрова Земли имеет решающее значение для всех живых существ, населяющих нашу планету.
Запасание энергии света в биологических «аккумуляторах». Поток солнечных лучей несет волны света разной длины. Растения с помощью световых «антенн» (это главным образом молекулы хлорофилла) поглощают волны света красной и синей частей спектра. Волны света зеленой части спектра хлорофилл пропускает не задерживая, и поэтому у растений зеленый цвет.
С помощью энергии света электрон в составе молекулы хлорофилла переносится на более высокий энергетический уровень. Далее этот высокоэнергетический электрон, как по ступенькам, перескакивает по цепи переносчиков электронов, теряя энергию. Энергия электронов при этом расходуется на «зарядку» своего рода биологических «аккумуляторов». Не углубляясь в химические особенности их строения, скажем, что один из них — аденозинтрифосфорная кислота, которую называют также аденозинтрифосфатом (сокращенно — АТФ). Как уже говорилось в § 6, в АТФ содержатся связанные между собой три остатка фосфорной кислоты, которые присоединены к аденозину. Схематически АТФ можно описать формулой: аденозин—Ф—Ф
Ф, где Ф — остаток фосфорной кислоты. В химической связи между вторым и третьим концевым фосфатом запасается энергия, которую отдает электрон (такая особая химическая связь изображена волнистой линией). Это происходит в результате того, что при передаче электроном своей энергии к аденозиндифосфату (аденозин—Ф—Ф, АДФ) присоединяется еще один фосфат: АДФ+Ф+Е → АТФ, где Е — энергия электрона, которая запасается в АТФ. При расщеплении АТФ ферментом аденозинтрифосфатазой (АТФазой) концевой фосфат отщепляется и освобождается энергия:
В растительной клетке энергия АТФ используется для транспорта воды и солей, для деления клеток, роста и движения (вспомните, как поворачивается вслед за Солнцем головка подсолнуха).
Энергия АТФ необходима для синтеза в растениях молекул глюкозы, крахмала, целлюлозы и иных органических соединений. Однако для синтеза в растениях органических веществ необходим еще один биологический «аккумулятор», запасающий энергию света. Этот аккумулятор имеет труднопроизносимое длинное название: никотин-амидадениндинуклеотидфосфат (сокращенно — НАДФ, произносится как «над-эф»). Это соединение существует в восстановленной высокоэнергетической форме: НАДФ-Н (произносится как «над-эф-аш»).
Потерявшая энергию окисленная форма этого соединения представляет собой НАДФ + (произносится как «над-эф-плюс»). Теряя один атом водорода и один электрон, НАДФ-Н превращается в НАДФ + и восстанавливает углекислый газ (при участии молекул воды) до глюкозы С6Н1206; недостающие протоны (Н + ) берутся из водной среды. В упрощенной форме этот процесс можно записать в виде химического уравнения:
Однако при смешивании углекислого газа и воды глюкоза не образуется. Для этого нужна не только восстанавливающая сила НАДФ-Н, но и энергия АТФ и соединение, связывающее С02, которое используется на промежуточных этапах синтеза глюкозы, а также ряд ферментов — биологических катализаторов этого процесса.
Фотолиз воды. Каким образом в ходе фотосинтеза образуется кислород? Дело в том, что энергия света расходуется также на расщепление молекулы воды — фотолиз. При этом образуются протоны (Н + ), электроны (О и свободный кислород:
Электроны, образующиеся при фотолизе, восполняют потери их хлорофиллом (как говорят, заполняют «дырку», возникшую в хлорофилле). Часть электронов при участии протонов восстанавливает НАДФ + до НАДФ-Н. Кислород — побочный продукт этой реакции (рис. 19). Как видно из суммарного уравнения синтеза глюкозы, при этом выделяется кислород.
Когда растения используют энергию солнечного света, кислород им не нужен. Однако в отсутствие солнечного освещения растения становятся аэробами. В ночной темноте они потребляют кислород и окисляют запасенные днем глюкозу, фруктозу, крахмал и другие соединения, уподобляясь в этом животным.
Световая и темновая фазы фотосинтеза. В процессе фотосинтеза различают световую и темновую фазы. При освещении растений энергия света преобразуется в энергию химических связей АТФ и НАДФ-Н. Энергия этих соединений легко освобождается и используется внутри клетки растения для разных целей, в первую очередь для синтеза глюкозы и иных органических соединений. Поэтому такую начальную стадию фотосинтеза называют световой фазой. Без освещения солнечным или искусственным светом, в спектре которого есть красные и синие лучи, синтез АТФ и НАДФ-Н в клетке растения не происходит. Однако, когда в растительной клетке уже накопились молекулы АТФ и НАДФ-Н, синтез глюкозы может происходить и в темноте, без участия света. Для этих биохимических реакций освещение не нужно, поскольку они уже обеспечены энергией света, запасенной в биологических «аккумуляторах». Эту стадию фотосинтеза называют темповой фазой.
Рис. 19. Схема фотосинтеза
Все реакции фотосинтеза происходят в хлоропластах — утолщенных овальных или круглых образованиях, расположенных в цитоплазме растительной клетки (кратко о хлоропластах уже говорилось в § 9). В каждой клетке находится 40—50 хлоропластов. Хлоропласты ограничены снаружи двойной мембраной, а внутри их размещаются тонкие плоские мешочки — тилакоиды, также ограниченные мембранами. В тилакоидах находятся хлорофилл, переносчики электронов и все ферменты, участвующие в световой фазе фотосинтеза, а также АДФ, АТФ, НАДФ + и НАДФ-Н. Десятки тилакоидов плотно уложены в стопки, которые называют гранами. Во внутреннем пространстве между гранами — в строме хлоропластов — размещаются ферменты, участвующие в восстановлении С02 до глюкозы за счет энергии продуктов световой фазы фотосинтеза — АТФ и НАДФ-Н. Следовательно, в строме происходят реакции темновой фазы фотосинтеза, тесно связанные со световой фазой, которая развертывается в тилакоидах. Световая и темновая фазы фотосинтеза схематически изображены на рисунке 19.
Хлоропласты имеют свой собственный генетический аппарат — молекулы ДНК и автономно воспроизводятся внутри клеток. Полагают, что более 1,5 млрд лет назад они были свободными микроорганизмами, которые стали симбионтами клеток растений.
- Объясните, почему мы говорим, что энергию для жизни на Земле изначально поставляет Солнце.
- Объясните, почему в процессе фотосинтеза используются углекислый газ и вода, и укажите, что служит источником побочного продукта фотосинтеза, т. е. кислорода.
- Как связаны между собой проблемы фотосинтеза и обеспечения продовольствием населения Земли?
- Почему при фотосинтезе энергия падающего на лист солнечного света переходит в энергию, запасенную в органических соединениях, с эффективностью всего около 1%? Какова судьба остальной энергии?
- Заполните таблицу.
Источник