Меню

Размер нейтронной звезды по сравнению с солнцем

Нейтронные звезды — возможный результат эволюции светил

На самом деле, нейтронные звезды это небесные тела, которые являются одним из вероятных конечных этапов эволюции светил. Ведь, как известно, у каждого свой жизненный путь и своя, скажем так, смерть.

Нейтроны — это тяжёлые элементарные частицы, не имеющие электрического заряда. Они, наряду с протонами, являются главными элементами ядра.

Как образуется нейтронная звезда

Считается, что образование нейтронной звезды это результат вспышки сверхновой. То есть то, что остаётся от тела после взрыва. Другими словами, это конечный продукт вспышки или звёздный остаток.
Между прочим, если такой остаток больше солнечного в три раза, то его эволюция продолжается. В результате коллапса формируется чёрная дыра.
По данным учёных, любой представитель главной последовательности, при условии массы больше Солнца в 8 раз, может эволюционировать в нейтронное светило.

«Проект-Технарь» является свободной площадкой, на которой можно найти или опубликовать чертежи, курсовые или дипломные работы на техническую тематику. Найти чертежи можно на studiplom.ru

Взрыв сверхновой

Когда происходит взрыв нейтронной звезды, внешняя оболочка резко проваливается на ядро. В это время возникает волновой скачок, то есть ударная волна. Которая, к слову, разносит вокруг частицы вещества из внешних слоёв.
Кроме того, часть вещества из разрушившихся слоёв попадает в центр. Благодаря чему внутренняя часть имеет высокую плотность и температуру. Надеюсь, теперь понятно, почему маленькая нейтронная звезда невероятно мала и тяжела.
Стоит отметить, что свою энергию после взрыва светило начинает переносить не равномерно, а потоками. Что, собственно, и вызывает его нестабильность.
Получается, что само ядро остается, но его свойства (масса, плотность, температура и т.д.) меняются.

Как устроены нейтронные звезды

В отличие от других тел они, главным образом, состоят из нейтронного центра (сердцевины). Отсюда, кстати, и появилось название типа.
А сверху их покрывает кора, образуемая тяжёлыми атомными ядрами, нейтронами и электронами.
Помимо этого в структуре рассматриваемых светил выделяют несколько частей.

Внутреннее строение

Строение

Атмосфера — тоненький (не более 100 см) слой ионизированного газа, то есть плазмы. Здесь сосредоточено тепловое излучение тела.
Внешняя кора содержит ядра и электроны, по толщине может быть несколько сотен метров. Притом в ней газ представлен в разных составах. Например, самые верхние покровы состоят из невырожденного газа, а в середине он уже вырожденный. Чем глубже, тем его состояние меняется на релятивистское и ультрарелятивистское вырождение.
Внутренняя кора включает в себя электроны, свободные нейтроны и ядра атомов с множеством нейтронов. Причем количество нейтронных частиц увеличивается с глубиной. Данный слой имеет протяжённость до нескольких километров.
Внешнее ядро выделяют у объектов малой массы. Поскольку может занимать всё пространство до звёздного центра. Вдобавок оно состоит преимущественно из нейтронов. Хотя некоторая доля протонов и электронов все же есть.
Внутреннее ядро наблюдается только у массивных светил. Оно отличается высокой плотностью. А радиус, по меньшей мере, составляет несколько километров. К сожалению, точный состав внутреннего вещества ещё не известен. Но определённо в нём присутствую нейтроны, барионы и кварки. Конечно, дальнейшее изучение и исследования продолжаются. И мы когда-нибудь узнаем все тайны нейтронных звезд.

Особенности нейтронных звезд

Как оказалось, нейтронная звезда невероятно мала и тяжела. Правда, она имеет плотность намного больше атомного ядра. Но из-за давления вещества, находящегося внутри ядра, дальнейшее гравитационное сжатие не продолжается.
Собственно говоря, вес и масса нейтронной звезды приблизительно равна солнечной. При этом её размер, точнее радиус, не более 20 км.
К тому же, к отличительным характеристикам нейтронных звезд относится их вращение вокруг своей оси. Стоит отметить, высокую скорость такого движения. Если говорить точнее, она составляет несколько сотен оборотов в секунду.

Читайте также:  Какие растения любят яркое солнце

Также важной чертой является сильное магнитное поле. Его мощь, в значительной мере, определяет остальные свойства и происходящие процессы.
Что интересно, сила гравитации звёздных тел после вспышки сильно увеличивается. Поэтому им свойственны огромная скорость падения вещества и сжатие сердцевины. Другими словами, это объясняет резкий характер происходящих процессов.
А вот столкновение внешних и внутренних слоёв нейтронных звезд может привести к разрушению атомов падающего вещества. При этом эти атомы превращаются в нейтроны.

Классификация

Разумеется, нейтронные звезды, как и любые другие объекты, делятся на виды. Хотя учёные установили, что они могут за свою жизнь изменяться.
В основном на их развитие влияют скорость вращения вокруг своей оси и магнитное поле. Так как собственное вращение со временем тормозится, а магнитное поле слабеет, то другие свойства и процессы также меняются.

Нейтронные звезды, их типы и примеры

Радиопульсары или, по-другому, эжекторы обладают высокой вращательной скоростью и сильными магнитными полями. Они, так сказать, выталкивают заряженные релятивистские частицы, излучаемые в радиодиапазоне. Кстати, первым из данного вида звёздных тел открыли радиопульсар PSR B1919+21.

Пропеллеры, напротив, не выделяют заряженные частицы. Однако из-за высокой скорости вращения и силы магнитной области вещество поддерживается над поверхностью. Правда, данный тип светил сложно обнаружить и он мало изучен.

Рентгеновский пульсар или аккретор отличается тем, что в нём вещество попадает на поверхность. Потому как небольшой темп оборотов позволяет ему спускаться, но уже в состоянии плазмы. В свою очередь, она нагревается благодаря магнитному полю. Как следствие, это вещество ярко светится в рентгеновском диапазоне. А вот пульсация возникает в результате вращения, при котором происходит затмение горячей материи. К примеру, первый аккретор — Центавр X-3 не только имел пульсацию своей яркости, но и постоянно менял период колебаний.

Рентгеновский пульсар

Георотатор имеет малую вращательную скорость, что вызывает приращение массы тела с помощью силы гравитации вещества (газа) из окружающего пространства. Такой процесс, между прочим, называется аккрецией.
Несмотря на это, границы области вокруг небесного тела позволяют магнитному полю удерживать плазму до того, как она окажется на поверхности.

Георотатор

Эргозвезда, на самом деле, представляет собой теоретически возможный тип. По мнению учёных, такой объект может сформироваться при слиянии или столкновении нейтронных звёзд.
Предполагают, что в ней имеется эргосфера, то есть область пространства-времени, расположенная рядом с чёрной дырой. Она, по идее, лежит где-то между горизонтом событий и пределом статичности. Проще говоря, подобные объекты имеют место быть, но это не точно.

Тайны нейтронных звезд

Можно сказать, что до реального открытия этот звёздный класс был сначала спрогнозирован в теории. То есть астрономы предполагали возможность появления подобных космических объектов.
Впервые же, их открыли лишь в 1967 году. Причем это был радиопульсар B1919+21 из созвездия Лисички.
Сейчас же число найденных нейтронных звёзд свыше 2500. Как выяснилось, из них лишь немногие входят в кратные системы. В действительности же, большая часть это отдельные светила.

Созвездие Лисичка

К удивлению, некоторые считают, что в скором времени появится в Солнечной системе нейтронная звезда, которая принесёт апокалипсис и конец света.
По некоторым данным, периодически в нашей системе появляется небесное тело с сильным магнитным полем. Его часто называют планетой Нибиру.
Более того, легенды и мифы рассказывают о том, что этот таинственный объект уже посещал нас. Такое нашествие всегда несёт за собой разрушение. Опять-таки, согласно древним легендам подобное происходило несколько раз. И, если это правда, наша планета всё выдержала.
На самом деле, астрономы замечали странный объект, который пока не идентифицировали. Хотя нет никаких доказательств о том, что он приближается к Земле и вообще, что это нейтронная звезда. Иногда, люди любят приукрашивать действительность.

Читайте также:  Лучший антивозрастной крем от солнца

Планета Нибиру (изображение)

Итак, мы разобрались что такое нейтронная звезда. Надеюсь, вам было интересно узнать как появляются и на какие типы делится этот вид светил.

Источник

Астрономы уточнили размер нейтронных звезд и усомнились в существовании их кварковых «близнецов»

Новости партнеров

Каков размер нейтронных звезд? Предыдущие оценки радиуса варьировались от восьми до шестнадцати километров. Астрофизикам из Университета Гете во Франкфурте (Германия) удалось определить размер нейтронных звезд с точностью до 1,5 километров с помощью сложного статистического подхода, основанного на измерении гравитационных волн. Отчет исследователей представлен в Physical Review Letters.

Нейтронные звезды – самые плотные объекты во Вселенной с массой, превышающей Солнце, но уплотненные в относительно маленькую сферу. Уже более 40 лет определение размеров нейтронных звезд является Святым Граалем ядерной физики, находка которого предоставит важную информацию о фундаментальном поведении ядерных плотностей.

Данные об обнаружении гравитационных волн от слияния нейтронных звезд (GW170817) вносят важный вклад в решение этой головоломки. В конце 2017 года профессор Лучиано Реццолла вместе со своими учениками Элиасом Мостом и Лукасом Вейхом уже использовали их, чтобы ответить на давний вопрос о максимальной массе, которую могут иметь нейтронные звезды перед тем, как коллапсировать в черную дыру. После первого важного результата эта же команда с помощью профессора Юргена Шаффнера-Белича приступила к установке более жестких ограничений на размер нейтронных звезд.

Суть в том, что уравнение состояния, которое описывает вещество внутри нейтронных звезд, неизвестно. Физики выбрали статистические методы для определения размеров нейтронных звезд в узких пределах. Они рассчитали более двух миллиардов теоретических моделей, решив для них уравнение Эйнштейна, и объединили этот большой набор данных с ограничениями, исходящими из обнаружения гравитационных волн GW170817.

В результате исследователи определили радиус типичной нейтронной звезды в пределах разницы 1,5 километров: он составляет от 12 до 13,5 километров, что может быть дополнительно уточнено будущими обнаружениями гравитационных волн.

«Тем не менее, у задачи могло быть не одно решение», – комментирует Юрген Шаффнер-Белич. Возможно, что при сверхвысоких плотностях вещество резко меняет свойства и приближается к так называемому «фазовому переходу». Это похоже на то, что происходит с водой, когда она замерзает и переходит из жидкого в твердое состояние. В случае нейтронных звезд этот переход предположительно превращает обычную материю в «кварковую», создавая звезды, которые будут иметь ту же массу, что и их «близнец» – нейтронная звезда, но они будут намного меньше и, следовательно, еще более компактны.

Хотя нет доказательств их существования, они могут быть правдоподобным решением, и исследователи из Франкфурта учли эту возможность, несмотря на дополнительные осложнения. Усилие оправдалось: звезды-близнецы оказались статистически маловероятны. Это важный вывод, который теперь позволяет ученым потенциально исключить существование этих очень компактных объектов. Будущие наблюдения гравитационных волн покажут, имеют ли нейтронные звезды экзотических близнецов.

Источник

Астрономы уточнили размер нейтронных звезд

Сравнительный размер нейтронной звезды. Фото: NASA’s Goddard Space Flight Center

Международная исследовательская группа во главе с сотрудниками Института гравитационной физики им. Макса Планка смогла усовершенствовать методику расчета размера нейтронных звезд. Для этого они внимательно изучили слияние нейтронной звезды GW170817. Результаты исследования предполагают, что типичный радиус нейтронной звезды достигает 11 километров. Кроме того, они также обнаружили, что нейтронная звезда в системе с черной дырой может быть поглощена ей при условии, что размеры черной дыры больше, и она вращается не быстро. Это означает, что подобные слияния могут быть источниками гравитационных волн, но при этом не могут быть обнаружены в электромагнитном спектре.

«Слияние нейтронных звезд в двойной системе – это настоящее сокровище для астрономов!», — говорит Коллин Капано, ведущий автор исследования. «Нейтронные звезды – это самый плотный объект в наблюдаемой Вселенной. Они настолько плотные, что, например, размер нейтронной звезды, полученной из Солнца, был бы всего несколько километров! Измеряя свойства этих объектов, мы узнаем о фундаментальной физике, которая управляет материей на субатомном уровне».

«Мы рассчитали, что размер типичной нейтронной звезды, масса которой превышает солнечную в 1.4 раза, составляет всего 11 километров», — добавил Бадри Кришнан, который возглавляет исследовательскую группу. «Наши результаты ограничивают радиус в пределах от 10,4 до 11,9 километров. Эти значения более чем в два раза точнее, чем давали предыдущие наблюдения».

Читайте также:  Время вращения урана вокруг солнца


Визуализация процесса столкновения в системе GW170817. двух нейтронных. Видео: Chandra X-ray Observatory

Нейтронные звезды — компактные, чрезвычайно плотные остатки взрывов сверхновых. Имея размер небольшого города, их масса может превышать массу Солнца и как ведет себя столь плотная материя остается неизвестно. В лабораториях невозможно даже приблизиться к таким условиям. Ученые предлагают различные гипотезы, относительно того как ведет себя материя в нейтронной звезде, но доказать или опровергнуть их пока невозможно.

Слияние нейтронных звезд позволяет астрономам определить их фундаментальные параметры: массу, размер, орбиту. Так, наблюдая за слиянием нейтронных звезд GW170817 с помощью гравитационных волн и в электромагнитном спектре в августе 2017 года, астрономам удалось изучить поведение материи в экстремальных условиях.

«Это немного ошеломляет. GW170817 был вызван столкновением двух объектов размером с город 120 миллионов лет назад, когда по Земле гуляли динозавры. Это произошло в галактике, которая расположена на расстоянии миллиарда триллионов километров. И с такого расстояние мы изучаем поведение материи на субатомном уровне!», — сказал Капано.

Насколько большая нейтронная звезда?

Франко-итальянский детектор гравитационных волн Virgo. Фото: НАСА

Для первоначальной оценки размеров нейтронной звезды у исследователей было несколько различных моделей, которые могли описать состояния нейтронных звезд. Из этой вариации ученые выбрали несколько моделей, которые могли бы объяснить предыдущие астрофизические наблюдения нейтронных звезд. После этого они наложили полученные данные на результаты наблюдения системы GW170817 с помощью данных регистраторов гравитационных волн LIGO и Virgo. Это позволило ученым не только получить достоверную информацию о физике плотной материи, но и получить самые строгие ограничения на размер нейтронных звезд на сегодняшний день.

Будущие наблюдения за нейтронными звездами

«Эти результаты впечатляют не только потому, что мы смогли значительно улучшить измерения радиусов нейтронных звезд, но и потому, что они дают нам представление о судьбе нейтронных звезд в сливающихся двойных системах», — говорит Стефани Браун, соавтор публикации. Благодаря этому исследованию астрономы наконец-то смогут выйти на такой высокий уровень, что смогут отличать только по анализу гравитационных волн слияние двух нейтронных звезд от слияния двух черных дыр.

Однако существует один нюанс. Слияние черной дыры и нейтронный звезды будет достаточно сложно отличить от слияния двух черных дыр. Для их разделения придется воспользоваться еще изучением их электромагнитного спектра. Но и здесь есть загвоздка. На основании теоретических расчетов, астрономы предполагают, что при таком слияние нейтронная звезда не будет разорвана черной дырой, а просто «нырнет» внутрь. Исключением будет лишь тот слушай, когда размер черной дыры достаточно мал или её скорость вращения достаточно велика.

Светлое будущее впереди

Ученые с оптимизмом смотрят в будущее и надеются на модернизацию существующих детекторов и постройку новых, которые позволят выйти на беспрецедентный уровень анализа гравитационных волн. Ведь каждое события слияние нейтронных звезд дает астрономам уникальную возможность узнать больше о нейтронной звезде и ядерной физике.

Источник

Adblock
detector