Конспект урока 11 класс Тема: «Русское солнце».
план-конспект урока по физике (11 класс) на тему
Конспект урока 11 класс
Тема: «Русское солнце».
Скачать:
Вложение | Размер |
---|---|
zika_11.doc | 162 байта |
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
По теме: методические разработки, презентации и конспекты
На уроке МХК в 10 классе по теме «Искусство Страны Восходящего Солнца» учащиеся знакомятся с культурой Японии, с особенностями архитектуры, скульптуры, садово-паркового дизайна, театрально.
Первый урок по сказке-были М.Пришвина «Кладовая солнца», 6 класс.
План конспект урока по теме «Русское общество в XI веке»Автор: Горошенкина Наталья Геннадьевна, учитель истории и обществознания МБОУ «СОШ№27» г.ПермиУрок подготовлен по учебнику: Сахаров А.Н. История.
познакомить школьников с понятием «энергия»; выяснить природу и многообразие энергии; рассмотреть природу солнечных лучей.
Конспект для 1 класса по окружающему миру.
Конспект урока на тему «Русские народные инструменты».
Методическая разработка урока для 7 класса.
Источник
Физика. 11 класс
Конспект урока
Физика, 11 класс
Урок 33. Звёзды. Солнце
Перечень вопросов, рассматриваемых на уроке:
1) Основные физические характеристики Солнца;
2) Строение Солнца;
3) Источник энергии Солнца;
4) Спектральная классификация звёзд;
5) Эволюция звёзд
Глоссарий по теме
Звезда – раскалённый газовый шар;
Светимость звезды – энергия, которую излучает звезда за 1 секунду по всем направлениям;
Фотосфера Солнца – ближайший к поверхности, нижний слой атмосферы Солнца;
Ядро Солнца – центральная часть шара, в которой протекают термоядерные реакции;
Протуберанец – выплёскивающаяся с поверхности Солнца в атмосферу струя;
Протозвезда – звезда на раннем этапе своей эволюции;
Нейтронная звезда – звезда сверхбольшой плотности порядка плотности атомного ядра;
Чёрная дыра – звезда с таким соотношением массы и радиуса, что ни одно тело из сферы действия его гравитации и даже свет не могут покинуть его;
Основная и дополнительная литература по теме урока:
1.Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 353 – 366
2. В.М. Чаругин. Астрономия. 10-11класс. М.: «Просвещение», 2017. С. 80 — 106
3. Саймон и Жаклин Миттон. Астрономия. М.: «РОСМЭН», 1995.
4.И.А. Климишин. Элементарная астрономия. М.: Наука. 1991.
Основное содержание урока
Наше изучение звёзд начинается с изучения Солнца, ближайшей к Земле, звезды.
Основные характеристики Солнца.
Первая величина, которая легко вычисляется для Солнца – это его радиус.
Угол, под которым видно Солнце с Земли, равен 16 секундам. Расстояние от Земли до Солнца — значение большой полуоси орбиты Земли. Радиус Солнца равен 700000 км.
Массу Солнца определим, используя третий обобщённый закон Кеплера:
подставив значения большой полуоси орбиты Земли, гравитационной постоянной и периода вращения Земли вокруг Солнца.
Масса Солнца равна
Зная, что на 1 м 2 за 1 с приходится 1370 Дж энергии, можно найти светимость Солнца:
Химический состав Солнца: примерно 70% водорода, 29 % гелия;
Температура на поверхности Солнца 6000 К.
Атмосфера Солнца. Нижний слой, называющийся фотосферой, имеет небольшую высоту.
Внешняя часть, называющаяся короной, простирается на несколько радиусов Солнца.
В структуре фотосферы выделяют гранулы, протуберанцы, темные пятна.
С поверхности Солнца постоянно идёт поток заряженных частиц, называемый солнечным ветром.
Временами на Солнце происходят вспышки, увеличивающий поток частик и всевозможные излучения Солнца.
Основные характеристики звёзд.
Основные характеристики звёзд. Изучение звёзд затруднено тем, что они находятся далеко и освещенность, которую они создают на Земле очень мало. Проблему наблюдения за звёздами решают при помощи больших телескопов
Измерения температур поверхности звёзд показывают, что есть прямая связь между температурой звезды и видом её спектра.
В результате все звёзды разнесены по звёздным классам: O, B, A, F, G, K,
Э.Герцшпрунг и Г.Рессел составили диаграмму зависимости светимости всех известных звёзд от их спектрального класса.
По этой диаграмме все звёзды расположились в четырёх группах.
Главная последовательность диаграммы дает расположение большинства звёзд. Солнце является звездой данной группы звёзд.
Плотности звёзд данной группы примерно равны плотности Солнца.
Вторая и третья группы звёзд данной диаграммы – гиганты и сверх — гиганты.
Группа звёзд гигантов – звёзды красного цвета со светимостью примерно в сто раз больше Солнца, а размеры в десятки раз больше.
Сверх – гиганты также звёзды со светимостью в сотни тысяч раз больше солнечной, а размерами в сотни раз больше. Плотность сверх – гиганта Бетельгейзе составляет одну миллионную долю плотности воздуха.
Белые карлики – это группа звёзд, которая располагается на диаграмме внизу слева. Светимость белых
карликов в сотни и тысячи раз меньше солнечной и по размерам сравнимы с планетами. Однако, плотность достигает огромных значений.
Источник энергии Солнца и звёзд.
Источником энергии Солнца и звёзд является ядерная энергия, которая выделяется при синтезе ядер гелия из ядер водорода.
Это — так называемая термоядерная реакция.
Доказательством верности наших представлений о строении Солнца является результаты поиска и регистрации нейтрино, которые сопровождают термоядерные реакции в недрах Солнца и легко проникают от места реакции до самой Земли.
Рождение звезды происходит в процессе сжатия газопылевых облаков галактик. Сначала увеличивается плотность, растёт температура и начинается излучение в инфракрасном диапазоне. Облако на этом этапе называют протозвездой.
Любая звезда в своей жизни проходит определенные стадии своей эволюции: рождение, пребывание на главной последователь последовательности, расширение и превращение в гиганта или сверх — гиганта. В зависимости от массы звезды происходит дальнейшее преобразование — либо в белого карлика, либо в нейтронную звезду или черную дыру.
Разбор тренировочных заданий
Выберите одно утверждение о звёздах, которые соответствуют диаграмме.
1) «Жизненный цикл» звезды спектрального класса В главной последовательности более длительный, чем звезды спектрального класса G главной последовательности.
2) Температура поверхности звёзд спектрального класса F ниже температуры звёзд спектрального класса А.
3) Звезда Арктур имеет температуру поверхности 4100 К, следовательно, она относится к звёздам спектрального класса В.
4) Средняя плотность сверхгигантов существенно больше средней плотности белых карликов.
Анализ утверждения 1): Начало жизненного цикла звёзд – левый верхний угол главной последовательности диаграммы Герцшпрунга – Рессела. Поэтому длительность «жизни» звезды класса В меньше, чем звезды класса G.
Утверждение 1) неверно.
Анализ утверждения 2): На нижней линии диаграммы указаны спектральные классы звёзд, на верхней линии — соответствующие температуры. Классу F соответствует температура ниже, чем классу А.
Утверждение 2) верно.
Анализ утверждения 3): Звезда с температурой 4100 К относится к классу К, что противоречит утверждению.
Утверждение 3) неверно.
Анализ утверждения 4): Белые карлики имеют рекордно высокую плотность. Это противоречит утверждению.
Утверждение 4) неверно.
Ответ: Верное утверждение – 2)
2. Установите соответствие между элементами
1.Термоядерная реакция, протекающая в ядре Солнца – реакция синтеза ядер гелия из 4 ядер водорода с образованием 2-х позитронов и 2-х нейтрино.
2. Атмосфера Солнца состоит на 70% из водорода, около 30% из гелия.
3. Солнечный ветер – это поток заряженных частиц с фотосферы Солнца: ядра гелия, водорода, электроны и незначительное количество ионов.
Источник
Конспект урока по астрономии на тему «Солнце». 10, 11 класс
Цель: формирование фундаментального астрономического понятия «звезда» на примере рассмотрения физической природы и основных характеристик Солнца как ближайшей и наиболее изученной звезды.
Общеобразовательные — формирование понятий:
— об основных характеристиках Солнца как космического тела: массе, размерах, плотности, движении, химическом составе и состоянии вещества, магнитном поле, возрасте и т.д.
— о внутреннем строении Солнца (ядре, зонах лучистого переноса и конвекции) и солнечной атмосфере (фотосфере, хромосфере, короне);
— об основных параметрах внутреннего строения (температуре, давлении, плотности газа и т.д.)
— об энергетике Солнца;
— о космических явлениях, наблюдаемых в атмосфере Солнца (грануляция, пятна, факельные поля, протуберанцы, вспышки, солнечный ветер).
1) Формирование научного мировоззрения учащихся:
— в ходе знакомства с определенным типом космических объектов – звездами и при рассмотрении основных физических характеристик Солнца как ближайшей из звезд;
— при изучении материала об энергетике Солнца.
2) Атеистическое воспитание учащихся в результате опровержения мифа о «сотворении мира» в свете данных о природе и возрасте Солнца как звезды, рядовой по своим параметрам. Политехническое воспитание при знакомстве учащихся с применениями научных знаний о Солнце в практической деятельности человека.
Развивающие — формирование умений:
— анализировать информацию, объяснять свойства космических объектов на основе важнейших физических теорий;
— решать задачи на расчет основных параметров Солнца с использованием законов механики, молекулярной физики и термодинамики.
Ученики должны знать:
— об основных физических характеристиках Солнца (приближенные значения соответствующих числовых величин;);
— о внутреннем строении (ядре, зонах лучистого переноса и конвекции) и структуре атмосферы (фотосфере, хромосфере, короне) Солнца;
— о возможности расчета параметров внутреннего строения Солнца (температуре, давлении, плотности газа и т.д.) на основе законов физики;
— основные сведения о термоядерных реакциях в недрах Солнца как основе звездной энергетики;
— астрономические величины (температура фотосферы, температура и давление в центре Солнца, массу и размеры Солнца в сравнении с земными).
Ученики должны уметь:
— анализировать учебный материал, использовать обобщенный план для изучения космических объектов, делать выводы;
— решать задачи на расчет основных параметров Солнца с использованием законов механики, молекулярной физики и термодинамики.
Наглядные пособия и демонстрации:
— фотографии, схемы и рисунки телескопического вида Солнца, его внутреннего строения, объектов и явлений в атмосфере Солнца (пятна, факельные поля, протуберанцы, вспышки);
— диапозитивы «Солнце»;
— диафильмы (фрагменты диафильмов): «Солнце и жизнь на Земле»;
— кинофильмы (кинофрагменты): «Солнце»; «Солнце – главный источник энергии на Земле»;
— таблицы: «Солнце»; «Строение Солнца»; «Солнечная система».
Задание на дом: Изучить материала учебников:
— Б.А. Воронцов-Вельяминова: § 22 (1, 2); упр. 19.
Лекция, беседа, рассказ учителя
Закрепление изученного материала. Решение задач
Работа у доски, самостоятельное решение задач в тетради
Подведение итогов урока. Домашнее задание
Урок начинается с объявления о начале изучения новой, одной из важнейших в курсе астрономии, темы «Солнце и звезды». Учитель объясняет школьникам цель и задачи изучения новой темы: изучение физической природы звезд и звездных систем. Внимание учащихся обращается на следующие положения:
1. Звезды — отдельный самостоятельный тип космических тел, качественно отличающийся от других космических объектов.
2. Звезды – один из наиболее распространенных (возможно, наиболее распространенный) тип космических тел.
3. Звезды сосредотачивают в себе до 90% видимого вещества в той части Вселенной, в которой мы живем и которая доступна нашим исследованиям.
4. Атомы вещества, из которого состоит наша планета и мы сами образовались свыше 6 миллиардов лет назад в недрах звезд.
5. От ближайшей из звезд – Солнца — зависит существование и развитие жизни на Земле.
Затем в ходе фронтального опроса и беседы с учениками мы повторяем и актуализируем знания о природе Солнца и звезд, обретенные школьниками ранее на уроках природоведения, естествознания, физики среднего и старшего звена, и астрономии первого полугодия XI класса. Следует проверить понимание понятий «космические объекты», «космические тела» и «космические системы».
Далее следует лекционное изложение нового материала. Оно начинается с рассмотрения основных физических характеристик и внутреннего строения Солнца как ближайшей и наиболее подробно изученной звезды. Строение Солнца можно продемонстрировать при помощи соответствующей таблицы (при этом экономится учебное время), но для более качественного усвоения материала учениками лучше поэтапно, с соответствующими пояснениями, воспроизвести его на доске (а ученики перерисовывают ее в свои тетради).
Масса Солнца 1,989× 10 30 кг, в 333434 раз превышает массу Земли и в 750 раз — всех планетных тел Солнечной системы. Радиус Солнца 695990 км, в 109 раз больше земного. Средняя плотность солнечного вещества 1409 кг/м 3 , в 3,9 раза ниже плотности Земли. Ускорение силы тяжести на экваторе 279,98 м/с 2 (28 g). Экватор Солнца наклонен под углом 7,2 к плоскости эклиптики. Сидерический период вращения на экваторе равен 25,38 суток и увеличивается по направлению к полюсам (до 32 суток на широте 60 ). Солнце обладает магнитным полем со сложной структурой средней напряженностью 1-2 Гс.
Возраст Солнца около 5 млрд. лет.
Видимая звездная величина (блеск) Солнца -26,6 m . Мощность общего излучения Солнца 374× 10 21 кВт. Светимость Солнца 4× 10 20 Вт. Земля получает 1/2000000000 часть солнечной энергии: на площадку в 1 м 2 , перпендикулярную солнечным лучам за пределами земной атмосферы приходится 1,36 кВт лучистой энергии.
Температура видимой поверхности (фотосферы) Солнца 5770 К. Спектральный класс Солнца G2.
Химический состав Солнца: водород — 71 %, гелий — 26,5 %, остальные элементы 2,5 %. Солнце не содержит в своем составе неизвестных на Земле химических элементов.
Агрегатное состояние солнечного вещества – ионизированный атомарный газ (плазма). Вглубь Солнца, с увеличением температуры и давления, степень ионизации растет вплоть до полного разрушения атомов в ядре Солнца.
Внутреннее строение Солнца:
1. Ядро (зона термоядерных реакций) — центральная область, простирающаяся на 1/3 радиуса Солнца от его центра, вблизи которого при давлении до 2× 10 18 Па, температуре 1,5- 1,6× 10 7 К и плотности плазмы до 16 г/см 3 протекают термоядерные реакции превращения ядер атомов водорода в ядра атомов гелия, сопровождающиеся выделением колоссальной энергии. Ядро вращается как единое твердое тело с периодом 22-23 суток.
2. Зона лучистого переноса (расстояния от 1/3 до 2/3 R) – область, в которой выделяющаяся в солнечном ядре энергия передается наружу, от слоя к слою, в результате последовательного поглощения и переизлучения электромагнитных волн. Плавно распределяясь по возрастающему объему вещества, энергия (и, в соответствии с законом Вина, длина) электромагнитных волн постепенно уменьшаются от 10 -11 -10 -12 Дж (g — и жесткое рентгеновское излучение) на границе с ядром до 10 -16 Дж (жесткий ультрафиолет) на границе с конвективной зоной, где плотность плазмы составляет около 0,16 г/см 3 при давлении до 10 13 Па и температуре до 10 6 К.
3. Зона конвекции (0,29 R) простирается почти до самой видимой поверхности Солнца. В ней происходит непрерывное перемешивание (конвекция) солнечного вещества со скоростью от 1 м/с в глубине зоны до 2-3 м/с на границе с фотосферой. В энергию магнитного поля преобразуется до 0,1 % от всей поступающей в конвективную зону тепловой энергии Солнца. На дне конвективной зоны с 22-летней периодичностью накапливается намагниченная плазма, образующая мощный магнитный слой. На глубины 0,8-0,9 R появляются первые нейтральные атомы – сначала гелия, затем водорода, выше их концентрация увеличивается.
Выше простирается атмосфера Солнца, в которой выделяется ряд следующих областей:
Фотосфера (сфера света) — слой газов толщиной 350-700 км. В нижнем слое фотосферы, обладающем температуре 8000 К при давлении солнечного вещества до 10 6 Па наблюдается гранулы — ячейки верхнего яруса конвективной зоны размерами около 700 км и временем существования до 8 минут — восходящие потоки раскаленных газов. Гранулы разделяются темными промежутками шириной до 300 км. Убывание температуры в наружных слоях фотосферы приводит к тому, что в спектре видимого излучения Солнца, почти полностью возникающего в фотосфере, наблюдаются темные линии поглощения. Они называются фраунгоферовыми в честь немецкого оптика Й. Фраунгофера (1787-1826), впервые зарегистрировавшего в 1814г. несколько сотен таких линий. По той же причине (падение температуры от центра Солнца) солнечный диск с края кажется более темным. Светлые участки фотосферы , на которых поверхность Солнца разогрета до 7000-10000 К, называются факельными полями (флоккулами). Отдельные участки фотосферы с пониженной до 4000-4500 К температурой по контрасту с раскаленной окружающей поверхностью воспринимаются как черные солнечные пятна.
Фотосфера условно считается «видимой поверхностью» Солнца (хотя на самом деле это тонкий слой раскаленного ионизированного газа) потому, что в вышележащих слоях солнечной атмосферы плотность вещества уменьшается настолько, что мы видим фотосферу Солнца сквозь эти слои, которые можем наблюдать лишь в особых обстоятельствах или при помощи специальных приборов.
Хромосфера толщиной около 10 4 км наблюдается во время полных солнечных затмений как красноватое кольцо вокруг Солнца. Её температура составляет десятки и сотни тысяч кельвин. Выше 1500 км хромосфера представляет собой совокупность сравнительно плотных и горячих (6000-15000 К) газовых струй и волокон. На высоту 4000-5000 км со скоростью 20 км/с поднимаются редкие изолированные столбы солнечного вещества – хромосферные спикулы диаметром 500-3000 км, занимающие до 0,5 % солнечной поверхности. На высоту от 10 4 –10 5 км вздымаются протуберанцы — сравнительно холодные плотные облака солнечного вещества разнообразной, часто причудливой формы. Время от времени наблюдаются хромосферные вспышки – термоядерные взрывы с выделением энергии до10 25 Дж.
Корона – внешняя, наиболее разреженная часть солнечной атмосферы, обладает очень сложной и постоянно изменяющейся структурой. Корона разделяется на внутреннюю (Т 6 К) и внешнюю (Т 6 К), образующую на расстоянии в несколько радиусов Солнца поток солнечного вещества — заряженных частиц (е — , р) и электромагнитного излучения — солнечный ветер, «дующий» со скоростью от 350-400 км/с на экваторе до 700 км/с на полюсах Солнца. Лучше всего хромосферу и корону наблюдать со спутников и орбитальных космических станций в УФ-вых и рентгеновских лучах.
Солнце и звезды светят потому, что в их недрах происходят термоядерные реакции превращения ядер атомов водорода в ядра атомов гелия.
Вы уже знаете, что массы звезд в сотни тысяч раз, в миллионы раз превышают массу Земли. Такая огромная масса порождает очень сильное давление верхних слоев вещества звезды на вещество вблизи её центра. Температура и давление вглубь звезды очень быстро растут: так, если температура видимой поверхности Солнца составляет около 6 000 К, то к центру Солнца она возрастает до 15 000 000 К при давлении до 2× 10 18 Па! В недрах более массивных звезд температура и давление еще выше.
Звезды почти целиком состоят из водорода и гелия: Солнце содержит 71% водорода, 26,5% гелия и лишь 2,5% других, более тяжелых химических элементов.
Под действием высоких температур и давлений в центрах звезд ядра атомов водорода — протоны — сближаются так тесно, что силы ядерного притяжения преодолевают силы электрического отталкивания. В результате этого взаимодействия протоны объединяются, образуя ядра атома гелия. Процесс идет в 3 этапа с огромным выделением энергии.
Эти термоядерные реакции носят название протон-протонного цикла. В более массивных звездах помимо реакций протон-протонного цикла протекают более мощные термоядерные реакции азотно-углеродного цикла, в которых ядра атомов азота и углерода являются катализаторами термоядерных реакций превращения водорода в гелий.
Водород – «звездное топливо», «сгорающее» в недрах звезд для того, чтобы они могли жить и светить. С течением времени близ центра Солнца и других звезд становится все меньше водорода и все больше гелия.
Чем меньше масса звезды, тем ниже давление и температура в её недрах, тем слабее, с меньшим выделением энергии идут термоядерные реакции, тем дольше «сгорает», превращаясь в гелий, водород в ядре звезды и тем дольше она живет. У красных тусклых звезд-карликов долгий век — они живут десятки миллиардов лет.
Наше Солнце — желтая, средняя по своим характеристикам звезда класса G живет уже 5 миллиардов лет, и будет светить еще почти 8 миллиардов лет.
Существование звезд обусловлено равновесием сил тяготения и упругости (газового давления)
Наше Солнце и другие звезды можно сравнить со сверхмощными — мощностью в миллиарды миллиардов земных водородных бомб! – естественными, природными термоядерными бомбами, непрерывно взрывающимися в течение миллионов и миллиардов лет.
Почему же этот сверхмощный взрыв не разрывает, не распыляет звезду в космическом пространстве? Этому мешает сила всемирного тяготения.
Масса звезд настолько велика, что сила тяготения мешает веществу звезды разлетаться в окружающем пространстве, притягивает его к центру звезды.
На каждую частицу вещества внутри звезды постоянно действуют две силы: одна из них — сила давления световых лучей и раскаленного газа, возникающая в ходе термоядерных реакций в недрах звезды, отталкивает эту частицу вещества прочь от звезды; другая — сила тяготения — стремится притянуть её обратно. Эти силы равны по величине, но противоположны по направлению. Они уравновешивают друг друга миллионы и миллиарды лет.
Солнечно-земные связи. Солнце оказывает огромное влияние на явления, происходящие на Земле. Коротковолновое его излучение определяет важнейшие физико-химические процессы в верхних слоях земной атмосферы. Видимые и ИК лучи являются основными поставщиками тепла для Земли. В различных странах мира, в том числе и в нашей стране, проводятся работы по более широкому использованию солнечной энергии для хозяйственных и промышленных целей. Солнце не только согревает и освещает Землю. Проявление солнечной активности сопутствует возникновению целого ряда геофизических явлений. Потоки заряженных частиц, ускоренные во вспышках, влияют на магнитное поле З. и вызывают магнитные бури, которые приводят к проникновению заряженных частиц в более низкие слои атмосферы, отчего и возникают полярные сияния. Коротковолновое излучение С. Усиливает ионизацию верхних слоев атмосферы, что сильно влияет на условия распространения радиоволн, иногда нарушается радиосвязь. Оказалось, то активные процессы на С., влияя на атмосферу и магнитное поле З., косвенным образом влияют и на сложные процессы органического мира – как животного, так и растительного. Эти воздействия и механизм в настоящее время исследуются учеными.
На заключительном этапе урока можно предложить ученикам выполнить 1-3 задачи.
Какая энергия поступает за 1мин. от Солнца в озеро площадью 1 км в ясную погоду, если высота Солнца над горизонтом 30, а атмосфера пропускает 80% излучения?
Решение: Т.к. солнечная постоянная составляет 1,36 кВт/м 2 (за пределами атмосферы), то на 1м 2 озера за 1 сек поступает энергия, равная
1,36*10 3 Дж/(с*м 2 )*0,8*0,5=544 Дж/(с*м 2 ), а на всю его площадь за 1 мин:
544 Дж/(с*м 2 ) 60с*10 6 м 2 =3,3*10 10 Дж.
Какая мощность излучения в среднем приходится на 1 кг солнечного вещества?
Решение: зная полную мощность излучения Солнца (его светимость L =4 10 26 Вт) и его массу (М=2 10 30 кг), нетрудно рассчитать, что искомая величина составляет 2 10 -4 Вт/кг.
Определите площадь солнечного пятна (см рис 68). (Темный круг слева внизу от пятна соответствует размеру Земли в масштабе фотографии).
Решение: для решения задачи необходимо прежде всего, определить диаметры Земли и солнечного пятна в масштабе фото (примерно 1 и 1,8 см соответственно). Затем, зная истинный диаметр Земли (12740 км), легко вычислить диаметр солнечного пятна (в км), а затем и его площадь (в км 2 ).
Источник