Меню

Релятивистские объекты во вселенной

Релятивистская модель Вселенной Эйнштейна (статистическая)

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения — общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве.

Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы.
Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность — это разные понятия.

Итак, из расчетов Эйнштейна следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира. Его более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый.

Читать онлайн

книги о тайнах и загадках истории, а также о необъяснимых явлениях на нашем сайте

Источник

Релятивистская Вселенная

Изучите релятивистскую теорию гравитации в общей теории относительности Эйнштейна: кривизна пространства и времени, пространство Минковского, энергия и момент.

Гравитация выступает геометрическим эффектом, где метрическая матрица играет важную роль, а перемещение объектов меняется из-за изогнутости пространства.

Задача обучения

  • Выявить факторы, влияющие на перемещение вблизи массивных объектов.

Основные пункты

  • Для определения кривизны пространства-времени можно использовать метрическую матрицу.
  • Кривизна может основываться на энергии и импульсе через уравнение Эйнштейна.
  • Из-за кривизны пространства-времени перемещение объектов меняется возле массивных тел.

Термины

  • Метрический – функция, определяющая дистанцию между элементами множества.
  • Общая теория относительности: учитывает гравитационные силы и ускоренную систему отсчета, постулируя наличие пространственно-временной кривизны в присутствии массы.
  • Пространство Минковского – четырехмерное плоское пространство-время. Из-за плоскости лишено материи.
Читайте также:  Сильнее чем ты вселенная

Относительность

Люди существуют в четырехмерном пространстве-времени, где дистанция между точками:

s 2 = -c 2 Δt 2 + Δx 2 + Δy 2 + Δz 2 = X T η X.

Это уравнение выступает матричным соотношением, в котором T обозначает транспонировку (для векторов A T B = A⋅B), X – вектор (cΔt, Δx, Δy, Δz), а η – матрица:

Проходящая мимо двух векторов матрица, дающая длину, именуется метрикой. В математике это функция, определяющая дистанцию между элементами множества. Множество – пространство-время, а элементы – точки в нем. Пространство-время с метрикой η называют пространством Минковского, а η – метрикой Минковского.

Это лишь одна из множества пространственно-временных геометрий, отличающихся метрической матрицей. Произвольная обозначаются как g. В 1916 году значимость пространства-времени определил Альберт Эйнштейн.

Общая теория относительности

Это геометрическая теория гравитации, опубликованная в 1916 году Эйнштейном. Считается современным описанием гравитации в физике. Она обобщает специальную теорию относительности и закон всемирного тяготения Ньютона. Отсюда выливается, что кривизна пространства-времени основывается на энергии и импульсе любой материи и радиации. Отношение задается формулой поля Эйнштейна.

g ↔ кривизна ↔ Энергия и момент

Метрику можно использовать для определения кривизны, а затем применять ее в уравнении поля Эйнштейна, где связывают энергию, кривизну и импульс. Пространство Минковского считается особенным, потому что лишено материи, из-за чего стало полностью плоским. Для точного вычисления кривизны, нужно ознакомиться с передовой математикой.

На нижнем рисунке показано, что все возле Земли изменило свое перемещение из-за искривленного пространства-времени. Это даже влияет на спутники, Луны и людей. Если бы пространство вокруг планеты было плоским, то при прыжке вверх, вы бы улетели. Но Земля меняет пространство-время, поэтому вы притягиваетесь к планете.

Массивная Земля изменяет пространство-время

Источник

Релятивистские модели Вселенной

В 1917 г. А. Эйнштейн построил модель Вселенной. В этой модели для преодоления гравитационной неустойчивости Вселенной использовалась космологическая сила отталкивания, получившая название лямбда-параметра. В дальнейшем Эйнштейн скажет, что это была грубейшая его ошибка, противоречащая духу созданной им теории относительности: сила тяготения в этой теории отождествляется с кривизной пространства-времени. Вселенная Эйнштейна имела форму гиперцилиндра, протяженность которого определялась общим количеством и составом форм проявления энергии (вещество, поле, излучение, вакуум) в этом цилиндре. Время в этой модели направлено от бесконечного прошлого к бесконечному будущему. Таким образом, здесь величина энергии-, массы Вселенной (вещество, поле, излучение, вакуум) пропорционально связана с пространственной ее структурой: ограниченная по своей форме, но бесконечного радиуса и бесконечная во времени.

Исследователи, которые стали анализировать эту модель, обратили внимание

на ее чрезвычайную неустойчивость, подобную стоящей на ребре монете, одна сторона которой соответствует расширяющейся Вселенной, другая — замкнутой: при учете одних физических параметров Вселенной, по модели Эйнштейна, она получается вечно расширяющейся, при учете других — замкнутой. Например, голландский астроном В. де Ситтер, допустив, что время искривлено так же, как и пространство в модели Эйнштейна, получил модель Вселенной, в которой в очень удаленных объектах время полностью останавливается.

А. Фридман, физики математик Петроградского университета, опубликовал в 1922 г. статью «О кривизне пространства». Вней приводились результаты исследований общей теории относительности, которые не исключали математической возможности существования трех моделей Вселенной: модель Вселенной в евклидовом пространстве (К = 0); модель с коэффициентом, равным (К> 0) и модель в пространстве Лобачевского — Больяй (К

Читайте также:  Лучшие цитаты про вселенную

радиус Вселенной пропорциональны величине энергии, вещества и другим

формам ее проявления во Все-

ленной в целом. Математические выводы А. Фридмана отрицали необходимость введения космологической силы отталкивания, поскольку из

общей теории относительности не исключалась возможность существования

модели Вселенной, в которой процессу ее расширения соответствует процесс сжатия, связанный с ростом плотности, давления составляющей Вселенную энергии-материи (вещество, поле, излучение, вакуум). Выводы А. Фридмана вызвали сомнение у многих ученых и у самого А. Эйнштейна. Хотя уже в 1908 г. математик Г. Минковский, дав геометрическую интерпретацию специальной теории относительности, получил модель Вселенной, в которой коэффициент кривизны равен нулю (К = 0), т. е. модель Вселенной в евклидовом пространстве.

Н. Лобачевский, основатель неевклидовой геометрии, проводил измерение углов треугольника между удаленными от Земли звездами и обнаружил, что сумма углов треугольника равна 180°, т. е. пространство в космосе является евклидовым. Наблюдаемая евклидовость пространства Вселенной является одной из загадок современной космологии. В настоящее время считается, что плотность вещества

во Вселенной составляет 0,1—0,2 части от критической плотности. Критическая плотность примерно равна 2 · 10-29 г /см3. Достигнув критической плотности, Вселенная начнет сжиматься.

Модель А. Фридмана с «К > 0» — это расширяющаяся Вселенная из исходного

ее состояния, к которому она должна вновь возвратиться. В этой модели появилось понятие возраста Вселенной: наличие предшествующего состояния относительно наблюдаемого в определенный момент.

Предположив, что масса всей Вселенной равна 5 · 1021 масс Солнца, А.

Фридман рассчитал, что наблюдаемая Вселенная находилась в сжатом состоянии

по модели «K > 0» приблизительно 10—12 млрд лет тому назад. После этого она стала расширяться, но это расширение не будет бесконечным и через определенное время произойдет вновь сжатие Вселенной. А. Фридман отказывался обсуждать физику начального, сжатого состояния Вселенной, поскольку законы микромира к тому времени не были ясны. Математические выводы А. Фридмана многократно проверялись и перепроверялись не только А. Эйнштейном, но и другими учеными. Через определенное время А. Эйнштейн в ответе на письмо А. Фридмана признал правильность этих решений и назвал А. Фридмана «первым ученым, ставшим на путь построения реля-

тивистских моделей Вселенной». К сожалению, А. Фридман рано умер. В его

лице наука потеряла талантливого ученого.

Как уже отмечалось выше, ни А. Фридману, ни А. Эйнштейну не были известны данные о факте «разбегания» галактик, полученные американским астрономом В. Слайфером (1875—1969) в 1912 г. К 1925 г. он измерил скорость движения несколько десятков галактик. Поэтому космологические идеи А. Фридмана обсуждались преимущественно в теоретическом плане. Но ужев 1929

г. американский астрономЭ. Хаббл (1889—1953)с помощьютелескопа с приборами спектрального анализа открыл так называемый эффект

«красного смещения».Свет, идущий от галактик, которые он наблюдал,

смещался в красную часть цветового спектра видимого света. Это говорило о том,

что наблюдаемые галактики удаляются, «разбегаются» от наблюдателя.

Эффект «красного смещения» — частный случай эффекта Доплера. Австрийский ученый К.Доплер (1803—1853) открыл его в 1824 г. При удалении источника волн относительно прибора, фиксирующего волны, длина волны увеличивается и становится короче при приближении к неподвижному приемнику волны. В случае световых волн длинные волны света соответствуют красному сегменту светового спектра (красный — фиолетовый), короткие — фиолетовому сегменту. Эффект «красного смещения» был использован Э. Хабблом для измерения расстояний до галактик и скорости их удаления: если «красное

Читайте также:  Понятие выражающее единство вселенной всего сущего принцип организации бытия

смещение» от галактики А, например, больше в два раза, чем от галактики В, то

расстояние до галактики А в два раза больше, чем до галактики В.

Э. Хаббл установил, что все наблюдаемые галактики удаляются по всем направлениям небесной сферы со скоростью, пропорциональной расстоянию до них: Vr = Нr, где r — расстояние до наблюдаемой галактики, измеряемой в парсеках (1 пс приблизительно равен 3,1•1016 м), Vr — скорость движения наблюдаемой галактики, Η — постоянная Хаббла, или коэффициент пропорциональности между скоростью движения галактики и расстоянием до нее

от наблюдателя. Небесная сфера — это понятие, которое используется для описания объектов звездного неба невооруженным глазом. Древние считали небесную сферу реальностью, на внутренней стороне которой закреплены звезды. Вычисляя значение этой величины, которую потом стали называть постоянной Хаббла, Э. Хаббл пришел к выводу о том, что она равна приблизительно 500 км/(с•Мпс). Иначе говоря, отрезок пространства

в один миллион парсек увеличивается за одну секунду на 500 км. Формула Vr

= Нr позволяет рассматривать как удаление галактик, так и обратную ситуацию, движение к некоему исходному положению, началу «разбегания» галактик во времени. Величина, обратная постоянной Хаббла, имеет размерность времени: t (время) = r/Vr = 1/H. При значении Н, о котором говорилось выше, Э. Хаббл получил время начала «разбегания» галактик, равное 3 млрд лет, что вызвало у него сомнение относительности правильности вычисленной им величины. Пользуясь эффектом «красного смещения», Э. Хаббл достиг самых удаленных галактик, известных в то время: чем дальше галактика, тем меньше воспринимаемая нами ее яркость. Это позволило Э. Хабблу говорить о том, что формула Vr = Hr выражает наблюдаемый факт расширения Вселенной, о котором говорилось в модели А. Фридмана. Астрономические исследования Э. Хаббла стали рассматриваться рядом ученых как опытные подтверждения правоты модели А. Фридмана о нестационарной, расширяющейся Вселенной.

Уже в 30-е годы некоторые ученые высказывали сомнения по поводу данных

Э. Хаббла. Например, П. Дирак высказал гипотезу о естественном краснении квантов света в силу их квантовой природы, взаимодействия с электромагнитными полями космического пространства. Другие указывали на теоретическую несостоятельность постоянной Хаббла: почему величина постоянной Хаббла должна быть вкаждой момент времени одинаковой в эволюции Вселенной? Это устойчивое постоянство постоянной Хаббла предполагает, что известные нам законы Вселенной, действующие вМегагалактике, обязательны для всей Вселенной в целом. Возможно, как говорят критики постоянной Хаббла, существуют какие-то другие законы, которым не будет соответствовать постоянная Хаббла.

Например, говорят они, свет может «краснеть» за счет воздействия на него межзвездной (МЗС) и межгалактической (МГЗ) среды, которые могут удлинять длину волны его движения к наблюдателю. Другим вопросом, вызвавшим дискуссии в связи с исследованиями Э. Хаббла, был вопрос о предположении возможности движений галактик со скоростью, превышающей скорость света. Если это возможно, то тогда эти галактики могут исчезнуть из нашего наблюдения, поскольку из общей теории относительности никакие сигналы не могут быть переданы быстрее света. Тем не

менее большинство ученых считают, что наблюдения Э. Хаббла установили

факт расширения Вселенной.

Факт расширения галактик не означает расширения внутри самих галактик, так как их структурная определенность обеспечивается действием внутренних сил гравитации.

Наблюдения Э. Хаббла способствовали дальнейшему обсуждению моделей А. Фридмана. Бельгийский монах и астроном Ж. Леметр (в первой половине прошлого) века обратил внимание на следующее обстоятельство: разбегание

Источник

Adblock
detector