За какое всё-таки время свет достигает Земли от центра Солнца (с анимацией)
Примечание: анимация в конце статьи. Там всё понятно.
В Космосе видимый свет движется с постоянной скоростью 300 000 км/с. Значит на преодоление расстояния от поверхности Солнца до Земли фотонам потребуется всего лишь 8 минут 20 секунд. Казалось бы, немного. Только этим фотонам нужно еще добраться до поверхности звезды, так как рождаются они в самих недрах светила.
В ядре Солнца происходит непрерывная термоядерная реакция в результате синтеза атомов водорода с образованием атомов гелия и выделением энергии в виде фотонов.
Само ядро представляет собой термоядерный реактор, радиус которого равен 170 тысячам километров. А это четверть радиуса Солнца. Образовавшиеся в ядре фотоны изначально обладают высокой энергией в диапазоне гамма-излучения.
Покидая реактор, фотоны попадают сначала в зону лучистого переноса, а затем в конвективную зону Солнца. Но, чтобы достигнуть поверхности звезды, фотонам приходится сталкиваться с препятствиями.
В Солнце громадное количество нуклонов (протонов и нейтронов). Фотон, подобно пуле, ударяясь о нуклоны, мгновенно рикошетит, меняя свое направление. Тем самым фотоны, рождаясь, непроизвольно становятся участниками игры в «Пинбол».
При этом, при соударении фотоны отдают часть свой энергии частицам, из-за чего волна фотона постепенно удлиняется. Так фотоны со временем переходят в рентгеновское излучение, затем в ультрафиолет, а после, в видимое излучение или свет.
Сколько раз фотоны будут налетать на частицы, прежде чем наконец-то выберутся из солнечной ловушки?
Здесь возникает проблема Случайного блуждания . Ответ можно найти в самой формуле Случайного блуждания, где расстояние равно произведению длины шага на квадратный корень суммарного количества шагов.
Пример, представим, что слепой Петя решит самостоятельно добраться от дома до магазина, который полностью окружает дом на расстоянии 1 км. Длина шага равна 1 метру. Петя будет двигаться со скоростью 1 м/с. Из формулы Случайного блуждания получится, что Петя доберётся до магазина только через 11 дней, сделав миллион шагов.
Теперь возвращаемся в лабиринт светила. Нам известна масса Солнца. Значит мы можем определить примерное количество нуклонов. Химический состав светила: 75% водорода и 25% гелия. То есть приблизительным подсчётом, в Солнце содержится 1.2 * 10 в 57 степени нуклонов.
Если теоретически нуклоны равномерно распределить внутри звезды, то расстояние между ними или шаг составит 1 ангстрем (0.1 нанометра). Радиус Солнца равен 695 000 км. Из формулы Случайного блуждания получится, что фотон столкнётся с частицами 48 302 дециллиона раз.
Сколько времени понадобится фотону, чтобы выбраться из солнечного лабиринта?
Благодаря современному компьютерному моделированию точное время постепенно уточняется. В настоящее время компьютером подсчитано, что фотону потребуется 170 000 лет, чтобы проделать путь от недр Солнца до его поверхности. И только после этого, сквозь космическое пространство, он долетает до человеческой сетчатки глаза, через 8 минут 20 секунд.
Получается, что солнечный свет, который мы видим сегодня, прошёл весь путь ещё с того времени, когда появился только первый современный человек.
Источник
Сколько времени фотон идёт от центра Солнца до поверхности?
Мне в мой канал в телеграме прислали следующий вопрос:
Добрый день! Во многих источниках пишут, что фотону от центра Солнца до его края идёт десятки тысяч лет (встречал цифру 40 000 лет). Так ли это? Можете объяснить как это происходит?
Отличный вопрос, основанный на тиражируемой многими околонаучными пабликами, сайтами и каналами информации.
На самом деле фотон, зародившись в ядре Солнца, идёт до поверхности Солнца случайное время. У одного фотона этот путь может занять несколько секунд, а другому — потребуются сотни тысяч или даже миллионы лет.
Я не знаю на чем основана цифра в 40 000 лет. Скорее всего это какое-то среднее значение полученное с помощью результатов какого-то моделирования.
Внутри Солнца плотность вещества — огромна. Однако, как мы знаем, даже в очень плотном веществе атомы не стоят вплотную друг к дружке как кирпичи в кладке. Даже в солнечном веществе большая часть объема — это пустое пространство между атомами.
Новорождённый фотон ждёт одна из двух возможных судеб. Или ему повезёт «проскочить» мимо всех атомов солнечного вещества и вылететь из Солнца, или же он столкнётся с каким-то атомом.
В первом случае фотон покидает Солнце сразу — буквально за пару секунд. Во втором начинается чистая чехарда. Фотон сталкивается с атомом, атом поглощает его и испускает точно такой же в произвольном направлении. Так фотон может носиться десятки тысяч лет от одного атома к другому внутри Солнца, до тех пор пока наконец по воле случая не выскочит за его пределы.
А вот дальнейший путь фотона до Земли уже проходит гораздо быстрее — всего 8 с небольшим минут.
Ставьте палец вверх чтобы видеть в своей ленте больше статей о космосе и науке!
Подписывайтесь на мой канал здесь, а также на мой канал в телеграме . Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос.
Источник
Как и почему светит Солнце?
Все мы с детства знаем о Солнце, о том, что оно согревает и освещает нашу Землю. Это настолько естественно, что долго вообще мало кто задумывался о том, почему солнце светит? Откуда оно берёт энергию? Давайте разбираться вместе.
Солнце это огромный газовый шар который на 73% состоит из водорода, на 25% из гелия, а остальные 2% составляют более тяжелые элементы: азот, углерод, кислород, кремний и так далее. На поверхности Солнца температура составляет 5800 градусов, а в ядре достигает целых 15 млн. градусов. Долгое время никто не мог понять, почему оно такое горячее, и откуда столько тепла. Гипотез было много, но все они не подтверждались наблюдениями.
Наконец в начале прошлого века британский астрофизик Артур Эддингтон первым догадался, что Солнце — это гигантский термоядерный реактор внутри которого идут реакции ядерного синтеза. Аналогичные реакции происходят например при взрыве водородной бомбы..
На Солнце за одну секунду При этом за одну секунду выделяется столько энергии, сколько при взрыве миллиарда водородных бомб.
Что же из себя представляет термоядерный синтез?
На земле, если два атома приблизятся, то они оттолкнутся и разлетятся в стороны.
Однако из-за огромной температуры и давления в ядре солнца, дела обстоят иначе и когда сталкиваются два атома водорода, они соединяются в один атом называемый дейтерием, который легче, чем атомы из которых он образовался, а лишняя энергия (тепло) при этом выделяется в виде частицы света – фотона. Дейтерий в свою очередь присоединяет к себе ещё один атом водорода и образуется гелий-3, а также вылетает ещё один фотон. Когда же сталкиваются два атома гелия-3, образуется гелий-4, два атома водорода и ещё один фотон. Таким образом, солнце из четырёх атомов водорода, производит один атом гелия и три фотона. И это только от одной цепочки реакций, а в Солнце их происходит порядка 10 в 38 степени в секунду.
Каждый из этих фотонов несёт большое количество энергии, и в течении десятков тысяч и миллионов лет странствует внутри Солнца, сталкиваясь с атомами, разогревая Солнце и превращаясь в десятки фотонов с меньшей энергией и видимой глазом частотой. Рано или поздно эти фотоны вылетают из Солнца и отправляются в вечное странствие по космосу, а часть из них прилетает к Земле даря нам свет и тепло.
Вот так благодаря многочисленным реакциям термоядерного синтеза в ходе которых водород превращается в гелий Солнце и вырабатывает энергию.
Ставьте палец вверх чтобы видеть в своей ленте больше статей о космосе и науке!
Подписывайтесь на мой канал здесь, а также на мой канал в телеграме . Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос.
Источник
Если Солнце прекратит синтез, оно будет светить ещё 40 миллионов лет, а не 8 минут
Если термоядерные реакции в центре Солнца вдруг остановятся, то мы узнаем об этом действительно через 8 с лишним минут , в тот момент, когда от Солнца прекратится поток нейтрино — тех частиц, которые образуются в процессе реакций термоядерного синтеза, и уносят часть энергии Солнца, этот процесс называется нейтринным охлаждением . Эти частицы проникают через вещество и не взаимодействуют с ним, поэтому для нейтрино практически не существует преград, и плотное Солнце (в самом центре) не является помехой.
Но свет — это не нейтрино, хоть фотон и не имеет массы покоя, а нейтрино имеет, он взаимодействует со средой, и в особо плотной среде скорость света ниже, чем в вакууме. Но, на самом деле, и тут нас ждёт подвох от физиков: скорость света (фотонов) всегда равна скорости света в вакууме и составляет, без малого, 299 792 458 метров в секунду или почти 300 000 километров в секунду, примерно в 1000 000 раз быстрее, чем реактивный самолёт.
Почему же в среде скорость света меньше? Ответ прост: свет проходит большее расстояние, таким образом, мы просто считаем, что его скорость меньше , нам так удобнее рассуждать, не считать же расстояние, пройденное фотонами света внутри стекла, например. Мы просто знаем, что скорость света в стекле меньше, чем в вакууме в 1,5 раза (именно такой показатель преломления n у оконного стекла).
А теперь вернёмся к Солнцу. Солнце, конечно, не стеклянное, но плотное, особенно, в ядре. Там плотность вещества достигает бешеных 150 граммов на кубический сантиметр. Это примерно в 150 раз больше плотности воды и в 7 раз больше, чем у осмия — самого плотного металла на Земле. Но всё равно этой плотности далеко до вещества белых карликов и нейтронных звёзд.
И даже с такой высокой плотностью вещества и в таком объеме, свет умудряется довольно быстро проникать через него. Поэтому Солнце не смогло бы удерживать фотоны так долго, и, в конечном итоге, оно бы погасло? Действительно, Солнце не «хранит» фотоны. Сама звезда просто возобновила бы медленное гравитационное сжатие, которое было остановлено около 4,5 миллиардов лет назад, когда скорости ядерных реакций в центре смогли достаточно возрасти, чтобы компенсировать радиационные потери с поверхности Солнца (поверхностное фотонное охлаждение).
Это явление называется гидростатическим равновесием (см. рисунок выше) , когда температура за счёт термоядерного горения и давление внутри Солнца удерживают гравитационное сжатие звезды под воздействием собственной массы. Простыми словами: чем глубже вы погружаетесь в Солнце, тем больший вес давит на вас сверху и тем большее давление снизу.
Но из-за того, что сила гравитационного сжатия может увеличивать плотность Солнца без увеличения давления, из-за того, что звёзды имеют жидкостную природу, Солнцу надо сохранять свою температуру на одном уровне и для этого должен идти постоянный термоядерный синтез в его центре.
Таким образом, даже если термоядерная топка внезапно погаснет, гравитационной потенциальной энергии Солнца будет достаточно, чтобы поддерживать необходимый поток энергии на протяжении десятков миллионов лет. Пока происходит процесс сжатия, Солнце будет поддерживать свою текущую светимость, но уменьшаться в радиусе, за счёт того, что поверхность его будет охлаждаться, а это, в свою очередь, приведёт к падению давления и к сжатию, а затем температура его поверхности увеличится, за счёт этого же сжатия. Этот процесс называется механизмом Кельвина-Гельмгольца и заметен на Юпитере, ядро планеты воздействием гравитационного сжатия излучают тепло, таким образом Юпитер больше излучает, чем получает от Солнца.
Как только Солнце сократится под воздействием сжатия в несколько раз и станет размером с Юпитер (около 30% его текущего радиуса), сжатие начнет замедляться, потому что электроны в ядре станут вырожденными, а давление начнёт увеличиваться с плотностью быстрее, чем для идеального газа. Замедляющееся сжатие уменьшает скорость высвобождения потенциальной энергии и, следовательно, солнечную светимость. Сжатие будет продолжаться с меньшей скоростью, пока Солнце не станет горячим «водородным белым карликом», в несколько раз превышающим размер Земли, который затем охладится до светящегося «уголька» без дальнейшего сжатия в течение миллиардов лет.
Таким образом, по расчётам, Солнце сможет существовать только за счёт своей массы около 40 миллионов лет. Именно поэтому в 19-м веке учёные считали, что должен быть какой-то источник энергии внутри светила, чтобы поддерживать его светимость. Они полагали, что это происходит за счёт гравитационного сжатия, и только в 30-х годах 20-го века Ханс Бете предположил, что в центре Солнца идёт термоядерный синтез.
Но, благодаря тому, что в Солнце идёт синтез гелия из водорода, вы можете подписаться на канал и поставить лайк:).
Источник
Откуда берется свет?
Что первое приходит на ум, когда мы слышим слово «светит»? Конечно же, Солнце! Именно эта звезда дала толчок к развитию жизни на нашей планете, и именно она светит нам вот уже много миллиардов лет. Но вот вопрос, а почему Солнце светит? Что заставляет его выпускать в космос кучу фотонов? Все достаточно просто — внутри Солнца постоянно происходит термоядерная реакция, от которой выделяется просто огромное количество энергии!
Казалось бы, все понятно: реакция происходит, энергия выделяется, свет идет, так? Да, но все немного сложнее. Как мы знаем, все во Вселенной состоит из молекул, а они, в свою очередь, состоят из атомов. Так вот, вокруг ядра атома летают частицы под названием «электроны», и именно они создают свет! Электроны могут «прыгать» по разным энергетическим уровням вокруг атома, и когда электрон получает слишком много энергии, он «прыгает» на уровень выше, а по исчерпании ее идет ниже, при этом испуская фотон света. А теперь представьте, сколько триллионов триллионов электронов в Солнце каждую долю секунды вот так перемещаются по уровням, и станет понятно, почему наша звезда светит так ярко 🙂
И да, в лампочках все работает похоже: в атомах нити накаливания электроны получают энергию, и излучают фотоны, только не от термоядерной реакции (иначе бы нам было жарковато), а от столкновения с другими электронами, которые создают электрический ток (эту тему мы затронем в следующих статьях).
Теперь вы знаете немного больше о том, откуда же берется свет, а далее я немного расскажу, как этот самый свет изучают.
Источник