Меню

С какого события начинается история нашей вселенной

Естествознание.ру

Краткая история Вселенной

Итак, примерно 13,8 миллиардов лет назад произошел Большой взрыв, и 13,8 миллиардов световых лет — это горизонт видимости во Вселенной. Самые дальние объекты, которые астрономам уже удалось разглядеть, это несколько звездных скоплений на расстоянии 13,2 миллиардов световых лет. Таким образом, мы «получили привет» от молодой Вселенной, возраст которой был всего 600 миллионов лет!

В принципе, мы могли бы заглянуть еще чуть дальше — вплоть до возраста 379 тысяч лет после Большого Взрыва. Почему именно такая цифра? Скоро узнаем.

Современные теории позволяют описать всё, что происходило, начиная от одной сотой секунды от Большого взрыва и до сего дня. Все нужные для этого законы являются надежно установленными, поэтому получаемую с их помощью информацию можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к началу мира, то есть внутрь первой сотой доли секунды. Здесь мы выходим за рамки Стандартной модели и попадаем в область гипотетических теорий. И тем не менее научные гипотезы простираются вплоть до 10 -35 с! Ещё ближе к началу мира, возможно, позволит в будущем приблизиться теория суперструн.

Давайте «прокрутим» основные события от Большого взрыва и до нашей эпохи. Итак.

Большой взрыв. По каким бы причинам ни возникла Вселенная, она начинает свою жизнь с планковского размера по всем измерениям (порядка 10 -35 м) и планковской температуры (порядка 10 32 К).

В этот начальный момент все 9 или 10 пространственных измерений свернуты в комок. Но уже через планковский квант времени (5×10 -44 с) три пространственных измерения начинают расширяться, а оставшиеся сворачиваются определенным образом (свойства свернутых измерений определяют все фундаментальные константы нашего мира, а значит, и то, какие именно частицы потом в нем родятся).

Разворачивание трех пространственных измерений подстегивается само собой и становится скачкообразным. Этот этап расширения Вселенной, называют инфляционным, оно происходит во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная раздулась в неимоверное число (10 50 ) раз.

Поначалу в горячей Вселенной бурно рождаются как частицы, так и античастицы. На каждый миллиард обычных частиц рождается почти столько же античастиц — но всё же на одну меньше. Затем частицы и античастицы аннигилируют, и вся их энергия превращается в излучение. Во Вселенной остается лишь жалкий клочок обычной материи. Из него-то и будут построены в дальнейшем все звезды и галактики.

К концу первой секунды расширения Вселенная остыла настолько, что кварки начинают группироваться в адроны, включая протоны и нейтроны. И с этого же момента начинается первичный ядерный синтез, который продолжается три минуты. Четверть всех ядер, сформировавшихся за это время — это гелий, чуточку дейтерия, а остальные три четверти — протоны. Таким и будет состав первых звезд.

Через 3 минуты Вселенная расширилась настолько, что столкновения ядер, в результате которых могли бы образовываться новые ядра, становятся огромной редкостью, и синтез ядер прекращается.

К исходу первых трёх минут Вселенная представляет собой раскаленное до миллиарда градусов море частиц — ядер и лептонов. Высокая температура не позволяет им объединиться в атомы. Это состояние раскаленной плазмы.

В следующие 379 тысяч лет ничего заметного не происходит — Вселенная спокойно расширяется и остывает. В этот период она непрозрачна для излучения, потому что фотоны постоянно рассеиваются на свободных электронах и ядрах. Это похоже на «светящийся туман».

Через 379 тысяч лет Вселенная охладилась достаточно (до 3000 градусов), чтобы из ядер и электронов могли образоваться нейтральные атомы. Среда становится прозрачной для света и остается таковой до сих пор. Говорят, что в этот момент излучение отделилось от вещества: с тех пор излучение расширяется и остывает само по себе, а вещество эволюционирует само по себе. Реликтовое тепловое излучение с характерной длиной волны около 4 см — это и есть то самое отделившееся излучение.

После отделения излучения от вещества началась тёмная эпоха — звезд еще не было, и светить было некому. На протяжении сотен миллионов лет вещество стягивалось к местам случайных первоначальных сгустков темной материи.

Через 600 миллионов лет после Большого взрыва стали формироваться галактики. Плотные и холодные облака газа сжимались, разогреваясь изнутри — и вот зажглись первые звезды. В их недрах начался синтез более тяжелых элементов, вплоть до железа. Через пару миллиардов лет Вселенная стала отдаленно напоминать то, что мы видим сегодня.

Массивные звезды первого поколения кончали свои жизни грандиозными взрывами, во время которых возникли элементы тяжелее железа. Потом из этого вещества сформировались звездные системы второго поколения, в том число и наша.

Процесс звёздообразования продолжается и сейчас, хотя темп его постепенно замедляется, поскольку запасы межзвездного вещества расходуются быстрее, чем пополняются.

Что касается нашего Солнца, то про его будущее можно сказать достаточно определенно. Солнце принадлежит к классу желтых карликов — спокойных долгоживущих звёзд. Уже около 5 млрд. лет оно светит, практически не меняясь. Но это может закончиться уже через 0,5 — 1 млрд. лет, когда водород в ядре звезды выгорит и зона термоядерного синтеза переместится в слои вокруг ядра. Это приведёт к «раздуванию» Солнца — оно превратится в красного гиганта. Через 4 миллиарда лет Солнце раздуется так, что поглотит Меркурий, Венеру и почти достигнет орбиты Земли. На Земле вся вода испарится, а большая часть атмосферы рассеется в космическое пространство. Ничего живого, понятное дело, не останется. А в ядре Солнца гелий начнет превращаться в углерод. Когда же и гелий «выгорит», Солнце может взорваться, сбросив свою распухшую оболочку. Оставшееся после взрыва компактное ядро (белый карлик) будет постепенно остывать, превращаясь в холодное безжизненное тело.

А что касается возможного развития Вселенной в будущем, то имеются самые разные сценарии. Теоретики, например, рассматривают гипотезу «Большого разрыва», связанного с изменением состояния вакуума, в момент которого наша Вселенная исчезнет за одно мгновение. Но это не очень скоро — через 22 млрд. лет, и не наверняка.

Если же такого не произойдет, то через сотни миллиардов лет погаснут последние звезды, и галактики погрузятся во тьму. Все планетные системы будут постепенно разрушены. Вероятно, галактики превратятся в гигантские черные дыры. В результате квантового процесса «испарения» черные дыры в конце концов тоже исчезнут, и Вселенная будет представлять собой расширяющийся нейтринно-фотонный газ. В общем, совершенно безрадостная картина.

Читайте также:  Баста ты моя вселенная выпуск

Но история космологии уже неоднократно демонстрировала нам, что картины, нарисованные совсем недавно, неожиданно оказываются устаревшими.

Реальность бесконечно разнообразнее и интереснее наших сегодняшних представлений о ней. Работы для физиков и космологов — непочатый край!

Источник

Теория Большого взрыва: история эволюции нашей Вселенной

Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.

Вначале был взрыв.

Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.

Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

Хронология событий в теории Большого Взрыва

Так все выглядело в разрезе времени.

Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10 -43 до 10 -11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Тайны сингулярности

Сингулярность мало кто может объяснить человеческим языком.

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

Эпоха инфляции

Можно попробовать визуализировать Вселенную так.

С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

Читайте также:  У вселенной есть лишь 3 ответа

Охлаждение Вселенной

После взрыва все должно было снизить температуру.

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10 -11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10 -6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

Структурирование Вселенной

Вот что произошло за 14 миллиардов лет.

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Что будет со Вселенной

Будущее знать нельзя, но можно предсказать.

Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.

Большой взрыв — в таком виде

Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

Читайте также:  Год во вселенной звездных войн

Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

История теории Большого взрыва

А вы бы смогли рассказать все это в эфире ВВС?

Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.

В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.

В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

Космос настолько загадочен, что мы не сможем понять даже малую его часть.

В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.

Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.

В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.

Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.

Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.

Источник

Adblock
detector