Меню

С космоса идут сигналы

Пойман сигнал из глубокого космоса, повторяющийся каждые 16 дней

Международная команда астрономов впервые обнаружила так называемый быстрый радиовсплеск (FRB), который повторяется на основе регулярного цикла. Подсчитано, что этот мощный сигнал поступает на Землю из глубокого космоса каждые 16 дней.

Исследование доступно на сайте препринтов arXiv, а коротко с ним можно ознакомиться на Science Alert. Речь идет об одном из тех загадочных сигналов, которые астрономы фиксируют уже несколько лет. Они получили общее название Fast radio burst (FRB).

Это чрезвычайно мощные вспышки излучения в радиочастотном спектре, которые длятся не более нескольких миллисекунд. Несмотря на столь краткое время жизни, они способны испустить столько же энергии, сколько и сотни миллионов Солнц.

До последнего времени считалось, что эти сигналы, как правило, уникальны и, «вспыхнув» один раз, никогда не повторяются. Из более 150 известных FRB только 10 были повторными. Поэтому ученым лишь несколько раз удалось проследить их вплоть до потенциального источника — галактик, расположенных в глубоком космосе.

Одним из них является аномальный сигнал под названием FRB 180916.J0158+65, который описывается в новом исследовании. Он странным образом следует определенному циклу. Как установили астрономы, в течение четырех дней подряд неизвестный источник каждый час испускает один или два таких всплеска, а затем утихает на 12 дней.

Каждая повторная вспышка оказывается слабее предыдущей. Через 12 дней все повторяется снова. В среднем цикл составляет 16,35 суток. Подсчитать интервалы помогли наблюдения, которые проводились при помощи обсерватории, расположенной в Канаде, на протяжении 409 дней.

Объяснить феномен ученые попытались при помощи компьютерного моделирования. В своей статье они отмечают, что другими космическими объектами, демонстрирующими периодичность, как правило, являются бинарные системы — звезды и черные дыры.

По их мнению, 16,35-дневный период может являться орбитальным периодом некоего объекта. При этом лишь частью своей орбиты он обращен к Земле. Ученые подсчитали, что данный объект расположен на окраине спиральной галактики на расстоянии 500 миллионов световых лет от нас, в звездообразующей области.

Это означает, что данный объект не может быть сверхмассивной черной дырой. Однако ученые не исключают, что им может оказаться черная дыра с массой звезды.

Стабильно повторяющийся цикл может быть объяснен, например, гравитационным влиянием какого-то соседнего объекта. По другой версии, сигналы FRB могут периодически блокироваться под влиянием приливных сил черной дыры.

Есть также мнение, что источником аномального FRB может оказаться одиночный объект, такой как рентгеновский пульсар. Но это объяснение почти не согласуется с полученными данными.

Подобные объекты являются источниками переменного рентгеновского излучения, приходящего на Землю в виде периодически повторяющихся импульсов. Однако ни один из известных науке пульсаров не «работает» по такому длительному циклу, как в случае с описанным сигналом.

Источник

Какие сигналы получили земляне из космоса?

Уже в течение 14 лет радиотелескопы, настроенные на прием сигналов из космоса, периодически фиксируют всплески волн.

Но ранее все сигналы были разовыми либо имели несистемные повторения.

Астрономам удавалось расшифровать их природу, моделируя те или иные ситуации и поведение небесных тел.

Но один из зарегистрированных всплесков носит такой необычный характер, что расшифровать его не удается всему мировому астрономическому сообществу.

В чем аномальность сигнала FRB 180916.J0158 + 65?

Читайте также:  Илон маск туризм космос

Чем он так удивляет астрономов?

Аномальные радиовсплески

Большинство из всплесков радиоволн, приходящих из космоса длиться несколько миллисекунд и не повторяется. Расшифровать их природу невероятно сложно, но чаще всего астрономам это удается. Радиовсплески в определенных условиях дают двойственные системы — звезды и черные дыры.

Называют такие сигналы Fast radio burst — быстрые радиовспышки или FRB. Всего лишь 10 сигналов повторялись, но в них не было ни ритма, ни логики.

И лишь FRB 180916.J0158 + 65 имеет четкую периодичность, фиксируемую уже больше 400 дней подряд.

Его сумела отследить команда канадских астрономов CHIME, опубликовавшая свой отчет , а затем к контрольному отслеживанию подключились их коллеги со всего мира. Данные об этом размещаются в свободном доступе.

За счет регулярной повторяемости астрономам удалось постепенно отследить вспышку до ее источника. Он расположен в 500 миллионах световых лет от Земли. По меркам FRB — это «близко». Все остальные вспышки были с более дальних расстояний и совсем из других областей космоса. Из данной зоны вспышки фиксируются впервые.

Исследователи очертили возможную зону расположения сигнала всего в пять световых лет. По данным астрономов там идет невероятный по масштабам процесс образования новых небесных тел.

Сигнал очень мощный. Профессор Кензи Ниммо из Амстердама считает , что для такой мощности нужна вспышка, равная 500 миллионам Солнц.

Сложный ритм

Но не только невероятная мощность вспышки и место расположения ее источника изумляют астрономов.

FRB 180916.J0158 + 65 изумляет своим сложнейшим ритмом . Сначала в течение четырех суток подряд вспышки на миллисекунду происходят каждый час.

Источник

Что нам хотят сообщить: какие сигналы приходят из космоса и кто их издает

Большинство сигналов из глубокого космоса имеют естественное происхождение, их источником служат звезды, планеты, галактики, туманности, черные дыры и многие другие объекты, но ряд сигналов выделяется среди остальных и может иметь искусственное происхождение, их источником могут быть инопланетные формы жизни. Рассказываем подробнее о таких случаях.

О каких сигналах идет речь?

О тех, которые можно поймать через существующие телескопы и радары. Например, радиотелескоп по диапазону частот занимает начальное положение среди астрономических инструментов для исследования электромагнитного излучения (более высокочастотными являются телескопы теплового, видимого, ультрафиолетового, рентгеновского и гамма-излучения).

Радиоволны без проблем могут путешествовать в космическом пространстве, их испускают многие небесные тела. Например, наша галактика Млечный Путь издает шипящие шумы.

В июле 2006 года исследователи запустили метеорологический зонд из Колумбийского центра исследовательских аэростатов NASA в городе Палестин, штат Техас. Ученые искали следы нагревания от звезд первого поколения в верхних слоях атмосферы, на высоте 36,5 км, где она переходит в безвоздушное пространство.

Вместо этого они услышали необычный радиогул. Он шел из далекого космоса, и исследователи до сих пор не знают наверняка, что стало его причиной и где находится его источник.

Кто может издавать эти сигналы?

Когда звезда взрывается и умирает, она может превратиться в быстро вращающуюся нейтронную звезду. Астрономы считают, что те из них, которые находятся в зоне сильного магнитного поля, могут излучать подобные странные сигналы.

Еще одно возможное объяснение — это столкновение двух нейтронных звезд.

По словам астронома из Монреаля Шрихарша Тендукара, эта версия работает только для неповторяющихся космических сигналов, поскольку в процессе столкновения звезды разрушаются. Большинство зафиксированных телескопами за последнее десятилетие радиовсплесков — как раз единичные.

Читайте также:  Мем про космос с собакой

Однако два обнаруженных сигнала повторятся снова и снова, и им придется найти иное объяснение.

Блицар — это гипотетический тип космических объектов, предложенный как одно из объяснений происхождения быстрых радиоимпульсов.

Быстро вращающаяся нейтронная звезда, которая не выдерживает собственного веса, резко сжимается и превращается в черную дыру.

Есть версия, что радиовсплески излучает нейтронная звезда, падающая в черную дыру. Или сама черная дыра, резко уменьшающаяся в размерах. Или темная материя при столкновении с черной дырой.

Хотя многие уверены, что радиосигналы имеют исключительно природное происхождение, кое-кто полагает, что они могут быть доказательством существования внеземных форм жизни.

Какие необычные всплески фиксировали ученые?

Это сильный узкополосный радиосигнал, зарегистрированный доктором Джерри Эйманом 15 августа 1977 года во время работы на радиотелескопе «Большое ухо» в Университете штата Огайо. Прослушивание радиосигналов проводилось в рамках проекта SETI. Характеристики сигнала (полоса передачи, соотношение сигнал/шум) соответствовали (в некоторых интерпретациях) теоретически ожидаемым от сигнала внеземного происхождения.

Пораженный тем, насколько точно характеристики полученного сигнала совпадали с ожидаемыми характеристиками межзвездного сигнала, Эйман обвел соответствующую ему группу символов на распечатке и подписал сбоку «Wow!» («Ого-го!»). Эта подпись и дала название сигналу.

Обведенный код 6EQUJ5 описывает изменение интенсивности принятого сигнала во времени. Каждая строка на распечатке соответствовала 12-секундному интервалу (10 секунд собственно прослушивания эфира и 2 секунды последующей компьютерной обработки).

Определение точного местоположения источника сигнала на небе было затруднено тем обстоятельством, что радиотелескоп «Большое ухо» имел два облучателя, ориентированных в несколько различных направлениях. Сигнал был принят только одним из них, но ограничения способа обработки данных не позволяют определить, какой же именно облучатель зафиксировал сигнал. Таким образом, существуют два возможных значения прямого восхождения источника сигнала.

Ожидалось, что сигнал будет зарегистрирован дважды — по разу каждым из облучателей — но этого не произошло. Последующий месяц Эйман пытался вновь зарегистрировать сигнал с помощью «Большого уха», но безуспешно.

Радиосигнал SHGb02+14a — обнаруженный в марте 2003 года участниками проекта SETI@home и на то время являвшийся лучшим кандидатом на искусственное происхождение, за все время работы программы поиска внеземной жизни SETI.

Источник наблюдался три раза общей длительностью около 1 минуты на частоте 1420 МГц, на которой водород, самый распространенный элемент во Вселенной, поглощает и испускает энергию. Ученые из SETI@home изучают данную часть радиоспектра, так как некоторые астрономы утверждают, что инопланетные сигналы могут быть обнаружены именно на этой частоте.

Есть целый ряд особенностей этого сигнала, которые привели к большому скептицизму относительно его внеземного искусственного происхождения. Источник находился между созвездиями Рыб и Овна, где в пределах 1 000 световых лет отсутствуют звезды. Частота сигнала менялась очень быстро — от 8 до 37 Гц/с.

Если причиной изменения частоты стал эффект Доплера, то это означало бы, что источник находится на планете, вращающейся почти в 40 раз быстрее, чем Земля (для сравнения, передатчик, установленный на Земле, менял бы частоту со скоростью около 1,5 Гц/с).

Помимо этого, при первичном обнаружении сигнала каждый раз его частота соответствовала 1 420 МГц, в то время как сигнал с изменяющейся частотой должен обнаруживаться на разных частотах в пределах ее колебания.

Читайте также:  Оон заседание по космосу

BLC-1 — кандидат в радиосигналы проекта SETI, потенциально исходящий с экзопланеты Проксима Центавра b. Сигнал имеет частоту 982,002 МГц. Сдвиг в его частоте соответствует орбитальному движению Проксимы b.

Радиосигнал был зарегистрирован в течение 30 часов наблюдений, проведенных Breakthrough Listen в обсерватории Паркса в Австралии в апреле и мае 2019 года. Об обнаружении сигнала объявлено в декабре 2020 года. По состоянию на декабрь 2020 года последующие наблюдения снова не смогли обнаружить сигнал, что необходимо для подтверждения того, что сигнал был техносигнатурой.

  • «Интригующий сигнал» от Проксимы Центавра

Астрономы, которые находятся в поисках радиосигналов от инопланетных цивилизаций, обнаружили «интригующий сигнал» со стороны Проксимы Центавра, ближайшей к Солнцу звездной системы.

Сигнал представляет собой узкий луч радиоволн 980 МГц, обнаруженный в апреле и мае 2019 года на телескопе Parkes в Австралии. Сигнал зафиксировали только один раз. Эта частота важна, потому что, как указывает Scientific American, именно в этой полосе радиоволн обычно отсутствуют сигналы от искусственных кораблей и спутников.

The Guardian со ссылкой на источник, имеющий доступ к данным об этом сигнале, сообщает, что это первый серьезный кандидат на инопланетную связь после Wow-сигнала. Но Guardian предупреждает, что этот сигнал «вероятно, тоже имеет земное происхождение».

Сигналы и правда могут быть связаны с внеземной жизнью?

Точно неизвестно, однако их поиски продолжаются. Например, проект SETI был организован для того, чтобы искать внеземную цивилизацию. Некоторые астрономы давно считают, что планет во Вселенной так много, что даже если малая их часть пригодна для жизни, то тысячи или даже миллионы планет должны быть обитаемыми.

Однако со временем реалистические оценки числа цивилизаций значительно упали и выросло число скептиков (см.: Уравнение Дрейка, Парадокс Ферми). При этом последние достижения астрономии и физики укрепили представление о существовании многих планетных систем, пригодных для жизни как таковой.

Существует два подхода к поискам внеземного разума:

  • Искать сигналы внеземных цивилизаций. Рассчитывая на то, что собратья по разуму также будут искать контакт. Основных проблем данного подхода три: что искать, как искать и где искать.
  • Посылать так называемый «сигнал готовности». Рассчитывая на то, что кто-то будет искать этот сигнал. Основные проблемы данного подхода фактически аналогичны проблеме подхода первого, за исключением меньших технических проблем.

В новой работе ученые предложили искать «световые» следы внеземных цивилизаций. Так, например, они предлагают регистрировать освещенность ночной стороны экзопланет, (например, светом городов). Предполагая, что орбита планеты эллиптическая, астрономы показали, что можно измерить вариацию блеска объекта и обнаружить, освещена ли его темная сторона. При этом, правда, ученые предполагают, что светимость темной стороны сравнима со светимостью дневной (у Земли эти величины отличаются на пять порядков).

Кроме этого, ученые намерены искать яркие объекты в поясах Койпера вокруг других звезд с последующим спектральным анализом их излучения. Астрономы полагают, что такой анализ позволит определить природу освещения — естественное оно или искусственное. Ученые подчеркивают, что все предложенные варианты нереализуемы с помощью существующей техники. Вместе с тем, по их мнению, телескопы нового поколения, как, например, американский «Джеймс Вебб», вполне могут справиться с описанными в работе задачами.

Источник

Adblock
detector