Меню

С помощью каких методов определили химический состав солнца

Как узнали химический состав солнца

Нередко можно встретить у читателя и слушателя недоверчивое отношение к тому, что говорят и пишут астрономы о Солнце и звёздах. Действительно, как могли учёные определить размеры, движение, а тем более химический состав далёких звёзд и Солнца, узнать о процессах, происходящих в их недрах и на поверхности? Ведь астроном не может побывать на небесных светилах. Если бы даже существовал летательный аппарат, который был бы в состоянии преодолевать межзвёздные пространства, то и тогда человек не смог бы добраться до Солнца: под действием жгучих солнечных лучей и он и его аппарат неминуемо превратились бы в пар, задолго до того, как они достигли поверхности Солнца.

Астроном лишён возможности изучать поверхности и недра этих далёких миров тем опытным путём, каким изучают Землю географы и геологи. Он не может подвергнуть их атмосферы тому непосредственному исследованию в лабораториях, которому физики, геофизики и химики подвергают атмосферу земную. Астроном может лишь наблюдать космические тела. Единственно, что «соединяет» его с Солнцем и звёздами — это луч света. Луч — это тот мост, который связывает Землю с «небом», тот путь, который ведёт к познанию природы космических тел. Следовательно, изучение небесных светил сводится к изучению световых лучей, ими испускаемых.

И луч света рассказывает астроному об очень многом, сообщает ему много интересных данных о Солнце и звёздах, посланцами которых он является. На основе изучения лучей определяется температура, химический состав и скорости движения космических тел, получается много других нужных и ценных сведений.

Изучаются не только Солнце и звёзды, но и планеты, которые собственного света не имеют. Их изучение основывается на исследовании отражённых планетами солнечных лучей.

Наиболее мощным средством изучения небесных светил является спектральный анализ, открытый около 80 лет тому назад.

Как известно, свет представляет собой один из видов электромагнитной энергии, распространяющейся в пространстве волнообразно. Длина волн видимого света заключена в весьма узкие пределы — от 7 до 4 десятитысячных миллиметра. В эти ничтожно малые пределы укладывается всё разнообразие, всё богатство красок и оттенков, которые воспринимаются человеческим глазом.


Рис. 13. Спектр излучения. Заштрихованная сеткой часть спектра — видимые лучи.

Лучи с меньшей длиной волны, чем в 3—4 десятитысячных миллиметра (ультрафиолетовые), уже невидимы для глаза, так же, как и лучи инфракрасные, у которых длина волны больше, чем у волн видимого луча света (рис. 13).

Источник

Школьная Энциклопедия

Nav view search

Навигация

Искать

Как определяют химический состав небесных тел

Подробности Категория: Работа астрономов Опубликовано 10.10.2012 16:20 Просмотров: 14759

Химический состав небесных тел определяют с помощью спектрального анализа.

О спектральном анализе вы можете прочитать на нашем сайте: http://ency.info/index.php/earth/rabota-astrnom/14-rabota-astrnom/29-chto-takoye-spektralni-analiz.
Ученые точно узнали химический состав небесных тел: звезд, туманностей, комет. И что важно: в их состав входят все известные на Земле химические элементы. Открытие спектрального анализа сделало переворот в науке, так как в недалеком прошлом казалось, что человек никогда не сможет узнать состав небесных тел, удаленных от Земли на огромные расстояния. А зная химический состав звезды, можно довольно уверенно судить о времени ее образования.
Физические свойства материи на самых больших масштабах и возникновение Вселенной изучает наука космология.
Физическую природу космических тел (их плотность, температуру, массу, химический состав, возраст, образование и т.д.) изучает наука астрофизика (от греч. слов άστρον — светило и φύσις — природа).
Астрофизика основывается на законах физики и на материалах астрономических наблюдений. Главные методы астрофизики: спектральный анализ, фотография и фотометрия (научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения) вместе с обычными астрономическими наблюдениями. О рождении астрофизики говорить стало можно только после того, как во второй половине XIX века появился спектральный анализ. Спектры звезд позволяют определить температуру, плотность и химический состав атмосферы любого небесного тела, узнать расстояние до звезд и их светимость, измерить скорость движения звезд по лучу зрения и скорость их вращения вокруг оси, оценить напряженность магнитного поля звезд, выявить присутствие оболочек горячего газа вокруг звезд.

Рассмотрим изучение химического состава звезд на примере Солнца.
Химический состав атмосфер можно узнать по темным линиям спектра. Газ поглощает из состава спектра более горячего источника света те самые лучи, которые он сам излучает в раскаленном состоянии. Отсюда ученые сделали вывод, что раскаленные поверхности Солнца и звезд дают спектры в виде радужных полосок, но эти поверхности окружены разреженными и менее раскаленными газами, которые и вызывают появление в спектре темных линий. Эти газы образуют вокруг Солнца и звезд атмосферы, химический состав которых можно узнать по темным линиям спектра. Поверхности Солнца и звезд хотя и дают такой же спектр, как жидкие и твердые раскаленные тела, но состоят из раскаленных наэлектризованных газов, более плотных, чем окружающие их атмосферы.
Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большой точностью химический состав солнечной атмосферы. Так, например, известно, что химический состав солнечной фотосферы ( излучающий слой звёздной атмосферы, в котором формируется непрерывный спектр излучения) состоит из

Читайте также:  Солнце уже садилось когда над рекой поднимался туман

Водорода 73,46 %
Гелия 24,85 %
Кислорода 0,77 %
Углерода 0,29 %
Железа 0,16 %
Неона 0,12 %
Азота 0,09 %
Кремния 0,07 %
Магния 0,05 %
Серы

В солнечной атмосфере установили присутствие множества известных нам на Земле химических элементов. Среди них газы: водород, азот; металлы: натрий, магний, алюминий, кальций, железо и многие другие. В 1942 году было обнаружено присутствие на Солнце в небольшом количестве золота.
Такие химические элементы, как, например, хлор, бор, йод, ртуть и некоторые другие, не были найдены на Солнце по их линиям в спектре. Одной из причин, возможно, является то, что эти элементы находятся не в атмосфере Солнца, а в его недрах. Между тем темные линии в спектре вызывают только те элементы, которые находятся в атмосфере Солнца и поглощают свет, идущий из более глубоких и более плотных раскаленных слоев Солнца.
Можно допустить, что хлор, бор, йод, ртуть и другие элементы на Солнце или в солнечной атмосфере имеются, но мы их обнаружить пока не можем.
Спектры звезд, свет которых, собранный с помощью телескопа, тоже можно направить в спектроскоп, похожи на спектр Солнца. И по их темным линиям можно определить химический состав звездных атмосфер так же, определили химический состав солнечной атмосферы по темным линиям спектра Солнца.
Оказывается, химический состав атмосфер звезд мало отличается от химического состава Солнца и нашей Земли. Во всяком случае, ни на Солнце, ни на звездах не найдено таких химических элементов, которые не были бы известны на Земле. Напомним, что и газ гелий, который сначала был обнаружен на Солнце, потом был найден на Земле.
По четкости, с которой видны темные линии спектров Солнца и звезд, можно определить долю каждого химического вещества в составе их атмосфер.

Определение химического состава небесных тел на основе изучения их спектров — очень сложная задача, требующая знания физических условий в исследуемом теле (особенно температуры) и применения методов теоретической астрофизики.
Ученые в результате исследований установили, что некоторые тела (например, звезды определенных типов) обладают теми или иными особенностями химического состава. Однако большинство остальных объектов состоит примерно из одних и тех же известных химических элементов. Поэтому можно говорить только о среднем космическом содержании элементов, о котором обычно судят по относительному числу атомов, находящихся в каком-либо объеме.

Источник

Способы исследования Солнца

Фото Солнца К.А. SOHO Изучение Солнца во многих отношениях составляет обособленную и специфическую отрасль астрономии, связанную с дневными наблюдениями. При исследовании большинства небесных светил основным затруднением является их недостаточная яркость, в то время как при изучении Солнца помехой чаще всего оказывается избы¬ток света. Солнечный свет настолько ярок, что человек не может смотреть на Солнце незащищённым глазом; требуются специальные приспособления для ослабления чрезмерной яркости. Поэтому Солнце является своеобразным объектом наблюдения, требующим применения специальных инструментов и методов.

Прежде всего встаёт важная проблема изучения и измерения полного потока лучистой энергии, непрерывно поступающей от Солнца на Землю. Этим занимается особая отрасль измерительной техники, называемая актинометрией (термин происходит от греческих слов «актис» — луч я «метрон» — мера). В ней применяются особые приборы, называемые актинометрами или пиргелиометрами.

Эти приборы основаны на* использовании теплового действия солнечных лучей. О количестве солнечной энергии, падающей на квадратный сантиметр Земли, можно судить, например, повышение температуры воды в
сосуде, на который падают солнечные лучи. Необходимы специальные меры предосторожности, чтобы полученное тепло не осталось неучтённым, рассеявшись в воздухе.

Читайте также:  Кладовая солнца пришвин описал

Актинометрия занимает промежуточное положение между астрофизикой и геофизикой. С одной стороны, не¬посредственным объектом исследования здесь является радиация Солнца. С другой стороны, на пути к земной поверхности эта радиация проходит сквозь земную атмосферу, которая в той или иной степени рассеивает и поглощает проходящие через неё лучи. Прозрачность воз¬духа меняется изо дня в день. Это определяет геофизический, метеорологический элемент в актинометрии.
Актинометрия в основном обходится без телескопа, этого основного орудия астрономического исследования. Все прочие формы наблюдений Солнца связаны с употреблением телескопической оптики.

Простейший способ телескопического наблюдения Солнца состоит в том, что, наведя телескоп на солнечный диск, рассматривают последний при достаточно сильном увеличении, изучая различные мелкие детали и образования на диске. При этом необходимо, чтобы телескоп был снабжён защитным приспособлением, предохраняющим глаз от губительного действия чрезмерно яркого света.

В простейшем случае это может быть достаточно тёмное стекло, пропускающее лишь очень небольшую долю лучей, а в более крупных и усовершенствованных инструментах применяются специальные гелиоскопические окуляры, в которых свет ослабляется при помощи особых оптических приспособлении:.

Часто необходимо измерять размеры деталей, видимых при помощи телескопа на солнечной поверхности, или же определять точное положение детали на солнечном диске. Для этого телескоп должен быть снабжён измерительными приспособлениями.
Непосредственное наблюдение Солнца в телескоп глазом называется визуальным наблюдением. При всех своих достоинствах оно во многих случаях уступает наблюдению фотографическому. Визуальное изучение и последовательное измерение множества деталей, нередко усеивающих солнечный диск, отнимает много времени и может растянуться даже на несколько часов. За это время на бурной и быстро меняющейся поверхности Солнца нередко совершаются заметные изменения. Между тем фотографический снимок Солнца со всеми деталями на его поверхности можно получить за малую долю секунды. Таким образом, по сравнению с визуальным наблюдением фотография имеет два ценных преимущества: быстрота и связанная с нею одновременность регистрации всей картины Солнца.

Далее, всякий фотографический снимок представляет собою документ, который можно сохранить неопределённо долгое время. В случае сомнений или новых соображений всегда можно снова обратиться к ранее полученным снимкам и повторить их измерение или же провести их исследование под новым углом зрения. Наконец, фотография позволяет получать снимки Солнца и в лучах, не¬видимых для глаза, например, в инфракрасных или ультрафиолетовых.

Прибор, специально предназначенный для фотографирования Солнца, называется гелиографом).
Это — телескоп, у которого в нижней части вместо окуляра приделана кассета, заключающая в себе фотографическую пластинку. Необходимой частью гелиографа является автоматический затвор, позволяющий получать снимок при очень короткой выдержке.

Наиболее удобным типом гелиографа является прибор, сконструированный дважды лауреатом Сталинской премии Д. Д. Максутовым по принципу менискового телескопа. Гелиограф Максутова изготовлен во многих экземплярах и принят в качестве стандартного инструмента для регулярных фотографических наблюдений солнечной поверхности на обсерваториях СССР.
На обсерваториях, имеющих в своём распоряжении гелиограф, Солнце фотографируется каждый ясный день, причём полученные снимки тщательно сохраняются. Таким путём собирается ценнейший материал о состоянии поверхности Солнца за многие годы.

При фотографировании деталей солнечной поверхности желательно иметь достаточно большое изображение. Этот астрономический инструмент не следует Смешивать с одноимённым прибором, употребляемым на метеорологических станциях. Там под названием «гелиограф» понимается аппарат, позволяющий автоматически регистрировать число часов за день, в течение которых Солнце не было закрыто облаками?

Для этого нужно, чтобы фокусное расстояние объектива (т. е. расстояние от него до изображения Солнца) было велико. Отсюда следует, что для получения изображения Солнца в крупном масштабе надо делать телескопы очень большой длины. При этом возникает трудность установки такого инструмента. Трубы небольших телескопов делаются свободно вращающимися во¬круг двух осей, что позволяет наводить трубу на любую точку небесного свода. Длинную трубу сделать подвижной очень трудно. Поэтому для таких инструментов применяется устройство другого рода.

Труба телескопа вместе с объективом, окуляром и кассетной частью делается неподвижной и устанавливается либо горизонтально, либо вертикально. К ней добавляется особое устройство, называемое целостатом. Целостат представляет собою зеркало (или сочетание нескольких зеркал), укреплённое на вращающейся подставке так, что с его помощью при любом положении Солнца на небесном своде солнечные лучи могут быть направлены в объектив телескопа. Таким образом, вместо того, чтобы двигать громадную трубу, поворачивают вслед за Солнцем только зеркало сравнительно небольших размеров. Это осуществляется автоматически, при помощи часового механизма. Если направить зеркало так, чтобы в поле зрения телескопа оказалось изображение Солнца и пустить в ход часовой механизм, то солнечные лучи всё время будут направляться зеркалами целостата в объектив телескопа и изображение будет стоять в поле зрения телескопа неподвижно.

Читайте также:  Использование сетки от солнца

Целостаты исключительной точности изготовляются нашей оптической промышленностью и применяются для различных установок, используемых при изучении Солнца. В частности, на Пулковской обсерватории имеется большая солнечная установка, позволяющая фотографировать как солнечный диск, так и спектр отдельных его участков. Разработанная лауреатом Сталинской премии Н. Г. Пономарёвым и построенная в 1941 г., она была разрушена во время войны, но в настоящее время восстановлена вновь в значительно усовершенствованном виде.

Большую роль в исследовании Солнца играют наблюдения полных солнечных затмений.

Несмотря на краткость полной фазы затмения, учёные каждый раз выезжают в ту узкую полосу Земли, где затмение бывает полным. Такие экспедиции требуют затраты больших средств и огромных усилий, так как на место наблюдения приходится привозить крупные астрономические инструменты и устраивать временные обсерватории. Нередко все эти приготовления оказываются напрасными. Стоит маленькому облачку закрыть Солнце в момент затмения, и никаких наблюдений выполнить, конечно, не удаётся. Но зато те результаты, которые удаётся получить в случае хорошей погоды, очень важны для гелиофизики.

Дело в том, что слои разрежённой материи, обволакивающие со всех сторон солнечный шар, светятся таким слабым светом, что подле слепящего солнечного диска их наблюдать невозможно. Особенно большой помехой тут является яркое дневное небо, на фоне которого совсем неразличимо слабое свечение, окружающее Солнце — «солнечная корона». Поэтому бесполезно было бы закрывать солнечный диск каким-нибудь щитком или заслонкой, расположенными подле наблюдателя: небо при этом остаётся по-прежнему более ярким, чем свет, идущий к нам из окрестностей Солнца. Необходимо, чтобы экран, заслоняющий солнечный диск, помещался за пределами земной атмосферы. Тогда толща воздуха, сквозь которую мы смотрим на небесное светило, тоже оказывается защищённой от солнечных лучей, небо делается тёмным, и его свет не мешает нам видеть слабо светящиеся оболочки, окружающие солнечный шар. Для наблюдения этих оболочек и посылаются астрономические экспедиции в район полосы солнечного затмения.

Быстрое развитие радиотехники позволило пополнить дело исследования Солнца ещё одним очень ценным методом. Было обнаружено, что кроме лучей, изучаемых оптическими методами, Солнце излучает также и электро¬магнитные колебания с такими длинами волн, которые наблюдаются при помощи радиоприёмников. Правда, земная атмосфера пропускает радиоволны лишь в очень ограниченной области с длиной волны примерно от 1 см до 10 м. Наблюдение в этом интервале длин волн, осуществляемое при помощи особых радиоприёмников направленного действия, называемых иногда «радиотелескопами», доставляет нам ценную информацию о физических процессах, развёртывающихся во внешних слоях газовых оболочек Солнца.
Результаты своих наблюдений астрономы подвергают дальнейшему изучению и стараются по ним выяснить, в чём состоит наблюдаемое явление и какова его причина. Этим занимается теоретическая астрофизика — сравнительно молодая отрасль астрономии, развивающаяся за последнее время особенно быстро и плодотворно. Её отдельные разделы решают многочисленные и разнообразные задачи. Теория спектральных линий позволяет по наблюдениям солнечного спектра определять плотность, температуру и степень ионизации газов в различных слоях атмосферы Солнца, а также судить о химическом составе этих слоёв.

Теоретическая гелиофизика выясняет происхождение и условия возникновения различных явлений, наблюдаемых нами на солнечной поверхности. Она даёт нам возможность судить о состоянии внутренних частей солнечного шара, недоступных для прямого наблюдения. Наконец, дальнейшее развитие теории должно объяснить нам, как образовалось Солнце, как оно эволюционировало, как будет развиваться в будущем и откуда берётся та солнечная энергия, которая так щедро разливается в окружающее пространство. Правда, дать ответ на такие глубокие вопросы нелегко, и потому в наше время теория нередко вынуждена ограничиваться гипотезами и пред¬положениями. Можно даже сказать, что в области гелиофизики теория отстаёт от наблюдений: очень многие важные и давно известные факты остаются не объяснёнными. Но теоретическая гелиофизика быстро развивается и, вероятно, недалеко то время, когда основные вопросы, выдвигаемые наукой о Солнце, будут разрешены, и мы получим стройную теорию, описывающую строение Солнца и объясняющую наблюдаемые на нём явления.

Солнечный протуберанец в сравнении с нашей планетой

Источник

Adblock
detector