Уродливая Вселенная (2021)
- Автор: Сабина Хоссенфельдер
- Год выпуска: 2021
- Серия: Сенсация в науке
- Жанр: научно-популярная литература, физика
- Наименование: Уродливая Вселенная
- Страниц: 360
- ISBN: 978-5-04-103209-8
- Язык: полностью русский
- Текст: читать онлайн
Триумф физики элементарных частиц и других выдающихся физических открытий остался далеко в прошлом. За последние 30 лет физика, увы, не радует нас новыми гениальными научными теориями. Почему так происходит? Правда ли, что фундаментальная наука в упадке?
Книга Сабины Хоссенфельдер исследует эту проблему и ищет ответ на вопрос: что должно лежать в основе современной физики?
Автор берет интервью у коллег по научному цеху, современных выдающихся ученых, предоставив нам возможность увидеть, как устроена теоретическая физика изнутри, какие проблемы в ней назрели.
Главная идея книги – в науке нет места догмам, и настоящие ученые должны остерегаться застоявшихся научных предубеждений, мешающих прогрессу в науке.
Электронная книга, выпущенная в 2021 году, принадлежит жанру Научно-популярная литература. Тематику книги можно охарактеризовать по следующим тегам: научные бестселлеры, научные исследования, научные открытия, научный поиск, познание мира, современная наука, тайны Вселенной, теоретическая физика. В библиотеке можно начать чтение книги «Уродливая Вселенная» (Сабина Хоссенфельдер) скачать бесплатно в формате fb2 полностью оцифрованную книгу для андроид. Также есть возможность просмотреть другие издания автора Сабина Хоссенфельдер.
Источник
Сабина хоссенфельдер уродливая вселенная
Уродливая Вселенная. Как поиски красоты заводят физиков в тупик
Небеса таят ощущение чуда.
И мне хотелось верить,
Что я буду подхвачена,
Lost in Math: How Beauty Leads Physics Astray by Sabine Hossenfelder
Copyright © 2018 by Sabine Hossenfelder. All rights reserved.
© Якименко А. О., перевод на русский язык, 2021
© ООО «Издательство «Эксмо», 2021
Они были так уверены – на все сто. Десятилетиями физики говорили нам, что знают, откуда ждать следующих открытий. Они строили ускорители, запускали спутники в космос и устанавливали детекторы в шахтах. Мир накалялся от зависти к физике[1]. Однако чаемых прорывов не происходило. Эксперименты не давали ничего нового.
Подвела физиков не математика, а их выбор математики. Они полагали, что мать-природа изящна, проста и щедра на подсказки. Думали, что могут слышать ее шепот, разговаривая с самими собой. И вот природа заговорила – и не сказала ни-че-го, четко и ясно.
Теоретическая физика – это стандартная математически мудреная, трудная для понимания научная дисциплина. Но для книги о математике здесь будет очень мало математики. Отбросьте уравнения и технические термины – и физика станет поиском смысла, исканиями, принявшими неожиданный оборот. Какие бы законы природы ни управляли нашей Вселенной, они не такие, как физики думали. Не такие, как думала я.
В книге рассказывается о том, как эстетическая оценка направляет современные исследования. Это моя собственная история, размышления о применении того, чему меня учили. Но также и история многих других физиков, мучающихся тем же противоречием: мы верим, что законы природы красивы, но разве верить во что-либо – это не то, чего ученый делать не должен?
Тайные законы физики
В которой я осознаю, что больше не понимаю физики. Я беседую с друзьями и коллегами, вижу, что не одна в замешательстве, и решаю вернуть на землю здравый смысл.
Серьезная проблема хорошего ученого
Я изобретаю новые законы природы, этим я зарабатываю на жизнь. Я одна из примерно десяти тысяч исследователей, чья задача – улучшить наши теории в физике элементарных частиц. В храме знаний мы те, кто копает в подвале, изучая фундамент. Мы обследуем трещины – подозрительные изъяны действующих теорий – и, когда что-то находим, зовем экспериментаторов разрыть более глубокие слои. В прошлом столетии такое разделение труда между теоретиками и экспериментаторами работало очень хорошо. Но моему поколению жестоко не везет.
Я уже двадцать лет в теоретической физике, и большинство людей из тех, кого я знаю, делают карьеру, исследуя вещи, которые никто никогда не видел. Они придумали немыслимые новые теории, вроде идеи, что наша Вселенная – лишь одна из бесконечно многих, составляющих вместе «мультивселенную». Они изобрели десятки новых частиц, заявили, будто мы проекции пространства большей размерности, а само пространство испещрено кротовыми норами, соединяющими отдаленные области.
Эти идеи крайне противоречивы – и все же чрезвычайно популярны, спекулятивны – но интригующи, красивы – но бесполезны. Большинство из них так трудно проверить, они практически непроверяемы. Остальные непроверяемы даже теоретически. Но роднит эти теории то, что они сформулированы теоретиками, убежденными, будто их математика содержит некий элемент истины о природе. Они верят, что их теории слишком хороши, чтобы не быть правдой.
Изобретению новых законов природы – разработке теорий – не учат на занятиях; как придумывать новые законы природы – не объясняют в книгах и пособиях. Частично физики научаются этому, осваивая историю науки, но преимущественно впитывают это умение от старших коллег, друзей и наставников, руководителей и рецензентов. В основном это передающийся из поколения в поколение опыт, нажитое тяжелым трудом чутье на то, что работает. Когда физиков просят оценить перспективы новоизобретенной, но еще не проверенной теории, они опираются на понятия естественности, простоты (или элегантности) и красоты. Эти тайные законы вездесущи в основаниях физики. Они неоценимы. И находятся в острейшем конфликте с требованием научной объективности.
Тайные законы сослужили нам плохую службу. Хотя мы и предложили множество новых законов природы, все они остались неподтвержденными. И пока я наблюдала, как моя профессия соскальзывает в кризис, я соскользнула в свой собственный, персональный кризис. Я больше не уверена, что то, чем мы занимаемся в основаниях физики, – наука. А если это не наука, зачем я даром теряю свое время?
Я пришла в физику, потому что не понимаю человеческого поведения. Я пришла в физику, потому что математика прямолинейна, говорит все так, как есть. Мне нравились точность, недвусмысленность математики, ее главенство над природой. Два десятилетия спустя понять физику мне мешает то, что я все еще не понимаю человеческого поведения.
«Мы не можем сформулировать точные математические правила, которые определяли бы, привлекательна некая теория или нет, – говорит Джан Франческо Джудиче. – Но удивительно, как красота и элегантность теории повсеместно признаются людьми разных культур. Когда я говорю вам: “Смотрите, у меня вышла новая статья, и моя теория красива”, мне не нужно объяснять вам тонкости теории – вы и так поймете, почему я взволнован. Правильно?»
Я не понимаю. Потому-то и завела этот разговор. С чего бы законам природы тревожиться о том, что я нахожу красивым? Подобная связь между мной и Вселенной кажется абсолютно мистической, абсолютно нереальной, слишком чуждой мне.
Но ведь Джан не думает, будто природе не все равно, что я нахожу красивым, – ей важно, что он считает красивым.
«Чаще всего это интуитивное чувство, – говорит он, – ничего такого, что можно было бы выразить в математических терминах. Как говорится, физическая интуиция. Существует важное различие в том, как физики и математики видят красоту. Правильная комбинация из объяснения эмпирических фактов и использования фундаментальных принципов – вот что делает физическую теорию успешной и красивой».
Джан работает[2] на теоретическом отделении ЦЕРН (CERN, Conseil Européen pour la Recherche Nucléaire, Европейская организация по ядерным исследованиям). В ЦЕРН функционирует самый крупный на сегодня ускоритель частиц на встречных пучках – Большой адронный коллайдер. Стоившее 6 миллиардов долларов 16-мильное подземное кольцо для ускорения протонов и сталкивания их друг с другом почти на скорости света обеспечивает нам максимальное приближение к элементарным строительным блокам материи.
Большой адронный коллайдер – это объединение экстремальностей: сверхохлажденные магниты, сверхвысокий вакуум, компьютерные кластеры, которые во время экспериментов записывают около трех гигабайт данных – что сравнимо с несколькими тысячами электронных книг – в секунду. Большой адронный коллайдер объединил тысячи ученых, десятилетия исследований и миллиарды высокотехнологичных компонентов ради одной цели – выяснить, из чего мы сделаны.
«Физика – игра хитроумная, – продолжает Джан. – И для того чтобы выяснить ее правила, требуется не только рациональность, но и субъективная оценка. По мне, так именно эта иррациональная составляющая и делает физику интересной и волнующей».
Я звоню из своей арендованной квартиры, вокруг громоздятся картонные коробки. Моя работа в Стокгольме подошла к концу – пора двигаться дальше и искать следующий исследовательский грант.
Зависть к физике (на англ. physics envy) – осудительное выражение, которое используют, критикуя стремление «гуманитарных» наук походить на физику, то есть казаться более «строгими», за счет злоупотреблений путаной терминологией и вычурной математикой. – Прим. перев.
Сейчас он руководит этим отделением. – Прим. перев.
Источник
Сабина хоссенфельдер уродливая вселенная
Уродливая Вселенная. Как поиски красоты заводят физиков в тупик
Небеса таят ощущение чуда.
И мне хотелось верить,
Что я буду подхвачена,
Lost in Math: How Beauty Leads Physics Astray by Sabine Hossenfelder
Copyright © 2018 by Sabine Hossenfelder. All rights reserved.
© Якименко А. О., перевод на русский язык, 2021
© ООО «Издательство «Эксмо», 2021
Они были так уверены – на все сто. Десятилетиями физики говорили нам, что знают, откуда ждать следующих открытий. Они строили ускорители, запускали спутники в космос и устанавливали детекторы в шахтах. Мир накалялся от зависти к физике[1]. Однако чаемых прорывов не происходило. Эксперименты не давали ничего нового.
Подвела физиков не математика, а их выбор математики. Они полагали, что мать-природа изящна, проста и щедра на подсказки. Думали, что могут слышать ее шепот, разговаривая с самими собой. И вот природа заговорила – и не сказала ни-че-го, четко и ясно.
Теоретическая физика – это стандартная математически мудреная, трудная для понимания научная дисциплина. Но для книги о математике здесь будет очень мало математики. Отбросьте уравнения и технические термины – и физика станет поиском смысла, исканиями, принявшими неожиданный оборот. Какие бы законы природы ни управляли нашей Вселенной, они не такие, как физики думали. Не такие, как думала я.
В книге рассказывается о том, как эстетическая оценка направляет современные исследования. Это моя собственная история, размышления о применении того, чему меня учили. Но также и история многих других физиков, мучающихся тем же противоречием: мы верим, что законы природы красивы, но разве верить во что-либо – это не то, чего ученый делать не должен?
Тайные законы физики
В которой я осознаю, что больше не понимаю физики. Я беседую с друзьями и коллегами, вижу, что не одна в замешательстве, и решаю вернуть на землю здравый смысл.
Серьезная проблема хорошего ученого
Я изобретаю новые законы природы, этим я зарабатываю на жизнь. Я одна из примерно десяти тысяч исследователей, чья задача – улучшить наши теории в физике элементарных частиц. В храме знаний мы те, кто копает в подвале, изучая фундамент. Мы обследуем трещины – подозрительные изъяны действующих теорий – и, когда что-то находим, зовем экспериментаторов разрыть более глубокие слои. В прошлом столетии такое разделение труда между теоретиками и экспериментаторами работало очень хорошо. Но моему поколению жестоко не везет.
Я уже двадцать лет в теоретической физике, и большинство людей из тех, кого я знаю, делают карьеру, исследуя вещи, которые никто никогда не видел. Они придумали немыслимые новые теории, вроде идеи, что наша Вселенная – лишь одна из бесконечно многих, составляющих вместе «мультивселенную». Они изобрели десятки новых частиц, заявили, будто мы проекции пространства большей размерности, а само пространство испещрено кротовыми норами, соединяющими отдаленные области.
Эти идеи крайне противоречивы – и все же чрезвычайно популярны, спекулятивны – но интригующи, красивы – но бесполезны. Большинство из них так трудно проверить, они практически непроверяемы. Остальные непроверяемы даже теоретически. Но роднит эти теории то, что они сформулированы теоретиками, убежденными, будто их математика содержит некий элемент истины о природе. Они верят, что их теории слишком хороши, чтобы не быть правдой.
Изобретению новых законов природы – разработке теорий – не учат на занятиях; как придумывать новые законы природы – не объясняют в книгах и пособиях. Частично физики научаются этому, осваивая историю науки, но преимущественно впитывают это умение от старших коллег, друзей и наставников, руководителей и рецензентов. В основном это передающийся из поколения в поколение опыт, нажитое тяжелым трудом чутье на то, что работает. Когда физиков просят оценить перспективы новоизобретенной, но еще не проверенной теории, они опираются на понятия естественности, простоты (или элегантности) и красоты. Эти тайные законы вездесущи в основаниях физики. Они неоценимы. И находятся в острейшем конфликте с требованием научной объективности.
Тайные законы сослужили нам плохую службу. Хотя мы и предложили множество новых законов природы, все они остались неподтвержденными. И пока я наблюдала, как моя профессия соскальзывает в кризис, я соскользнула в свой собственный, персональный кризис. Я больше не уверена, что то, чем мы занимаемся в основаниях физики, – наука. А если это не наука, зачем я даром теряю свое время?
Зависть к физике (на англ. physics envy ) – осудительное выражение, которое используют, критикуя стремление «гуманитарных» наук походить на физику, то есть казаться более «строгими», за счет злоупотреблений путаной терминологией и вычурной математикой. – Прим. перев.
Источник
«Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Громких открытий в физике не было уже несколько десятилетий. Максимум — экспериментальные подтверждения того, что давно предсказала теория, вроде бозона Хиггса. Значит ли это, что фундаментальная физика переживает упадок? В книге «Уродливая Вселенная: как поиски красоты заводят физиков в тупик» (издательство «Бомбора»), переведенной на русский язык Аленой Якименко, научный сотрудник Франкфуртского института передовых исследований Сабина Хоссенфельдер рассказывает, как увлечение физиков математической красотой направляет современные научные исследования, и что с этим не так. N + 1 предлагает своим читателям ознакомиться с отрывком, который посвящен фундаментальным симметриям природы и теории Великого объединения.
Сходящиеся линии
В последний раз теория всего была у человечества 2500 лет назад. Греческий философ Эмпедокл предположил, что мир соткан из четырех элементов: земли, воды, воздуха и огня. Аристотель позже добавил пятый, божественный элемент — эфир. Никогда больше объяснение всего не было таким простым.
В философии Аристотеля каждый элемент характеризуется двумя свойствами: огонь сухой и теплый, вода влажная и холодная, земля сухая и холодная, а воздух влажный и теплый. Изменения происходят, поскольку (1) элементы стремятся к своим «естественным местам» — воздух поднимается вверх, камни падают вниз и так далее — и (2) могут менять на противоположное по одному своему свойству за раз, если тому нет препятствий: так, например, сухой и теплый огонь может превратиться в сухую и холодную землю, а влажная и холодная вода — во влажный и теплый воздух.
Утверждение, что камни падают вниз, ибо такова их естественная склонность, не очень-то много объясняет, но то была, несомненно, простая теория, которую можно было проиллюстрировать удовлетворительно симметричной диаграммой (рис. 11).
Впрочем, даже в IV веке до нашей эры стало очевидно, что теория слишком уж проста. Алхимики начали выделять все новые и новые вещества, и теория со всего лишь четырьмя элементами не могла объяснить такого разнообразия. Однако только в XVIII веке химики поняли, что все вещества — комбинации относительно небольшого числа «элементов» (в то время думали, что их меньше сотни), которые дальше уже разложить нельзя. Наступила эра редукционизма.
А тем временем Ньютон понял, что падение камней и движение планет роднит общая причина: тяготение. Джоуль показал, что теплота — это вид энергии, как обнаружилось позднее — происходящий из движения крохотных частиц под названием «атомы». Для каждого химического элемента характерен свой тип атома. Максвелл объединил электричество и магнетизм в электромагнетизм. И всякий раз, когда прежде разрозненные эффекты получали объяснение в рамках общей теории, новые открытия и применения не заставляли себя долго ждать: приливы вызываются Луной, энергию можно использовать для охлаждения, колебательные контуры служат источниками электромагнитного излучения.
В конце XIX века физики заметили, что атомы способны испускать и поглощать только свет с определенными длинами волн, но объяснения наблюдавшимся регулярностям ученые дать не могли. Чтобы с этим разобраться, они разработали квантовую механику, которая объяснила не только атомные спектры, но и большинство свойств химических элементов. К 1930-м годам физики выяснили, что все атомы имеют ядро, состоящее из меньших частиц — нейтронов и протонов — и окруженное электронами. На стезе редукционизма это стало еще одной вехой.
Следующим шагом в истории объединения Эйнштейн примирил пространство и время и получил специальную теорию относительности, после чего свел воедино гравитацию и специальную теорию относительности, создав общую теорию относительности. В итоге возникла необходимость избавиться от противоречий между квантовой механикой и специальной теорией относительности, что привело к благополучному рождению квантовой электродинамики.
Полагаю, примерно на этом этапе наши теории были самыми простыми. Но уже тогда физики знали о радиоактивном распаде — явлении, которое даже квантовая электродинамика объяснить не могла. Ответственность за распады возложили на новое, слабое взаимодействие, добавив его в теорию. Затем коллайдеры достигли энергий, достаточно высоких для того, чтобы нащупать сильное ядерное взаимодействие, — и на физиков обрушился «зоопарк» элементарных частиц (см. вторую главу). Это временное приращение сложности быстро пресекли теория сильного ядерного взаимодействия и объединение электромагнитного и слабого взаимодействий в единое электрослабое, поскольку выяснилось, что большинство из той лавины частиц составные — собраны из всего лишь двадцати четырех частиц, которые уже нельзя разложить на части.
Эти двадцать четыре частицы (с бозоном Хиггса, добавившимся позже, их стало в итоге двадцать пять) остаются элементарными и сегодня, и Стандартная модель плюс общая теория относительности до сих пор объясняют все наблюдения. Мы несколько оживили их темной материей и темной энергией, но, поскольку у нас нет никаких данных о микроскопической структуре этих темных лошадок, в настоящее время их трудно увязать всех вместе.
Объединение, однако, шло столь успешно, что физики считали логичным следующим шагом появление теории Великого объединения.
Мы классифицируем симметрии своих теорий с помощью того, что математики зовут «группами». Группа содержит все преобразования, которые не изменят теорию, при условии что соблюдается симметрия. Группа симметрии круга, например, состоит из всех вращений вокруг его центра и обозначается как U(1).
Пока в нашей дискуссии о симметрии мы обсудили лишь симметрии уравнений, законов природы. Однако наблюдаемое нами описывается не самими уравнениями, а их решениями. И сам по себе факт, что уравнение обладает симметрией, совершенно не означает, что решения этого уравнения обладают той же симметрией.
Представьте себе волчок, крутящийся на столе (рис. 12). Окружающая его обстановка одинакова по всем направлениям, параллельным поверхности стола, значит, уравнения движения обладают вращательной симметрией относительно любой оси, перпендикулярной столешнице. Когда волчок закручивают, его движение сопровождается уменьшением момента импульса из-за трения. Поначалу волчок действительно подчиняется вращательной симметрии, но в конце концов он заваливается на сторону и останавливается. После этого его ось указывает уже в одном каком-то направлении. Мы говорим, что симметрия «нарушилась».
Подобное спонтанное нарушение симметрии — обычное дело в фундаментальных законах природы. Как иллюстрирует пример с волчком, будет ли система подчиняться симметрии — может зависеть от энергии системы. Волчок, пока обладает достаточной кинетической энергией, симметрии подчиняется. И только когда на трение растрачивается существенное количество энергии, симметрия нарушается.
То же относится и к фундаментальным симметриям. Энергии, с которыми мы обычно имеем дело в повседневной жизни, определяются температурой окружающей нас среды. С точки зрения физики элементарных частиц эти энергии ничтожны. Скажем, комнатная температура соответствует примерно 1/40 эВ, что на 14 порядков меньше энергии, затрачиваемой на Большом адронном коллайдере на столкновения протонов. При такой низкой энергии, соответствующей комнатной температуре, большинство фундаментальных симметрий нарушаются. При высоких же энергиях они способны восстанавливаться.
Симметрия электрослабого взаимодействия, например, восстанавливается как раз при энергиях, достигающихся на Большом адронном коллайдере, о чем сигнализирует нам рождение бозона Хиггса.
Стандартной модели нужны три разные группы симметрии — U(1) и SU(2) для электрослабого взаимодействия и SU(3) для сильного. Это маленькие группы, как видно по небольшим числам в скобках. Но более крупные группы симметрии зачастую содержат в себе несколько групп поменьше, так что одна большая группа, чья симметрия нарушается при высоких энергиях, могла бы породить Стандартную модель при энергиях, которые мы исследуем. Получается, теория Великого объединения — словно некий слон, а у нас сейчас, на низких энергиях, есть от него лишь ухо, хвост и нога. Целиком слон восстановится только при энергии объединения, оцениваемой примерно в 10 16 ГэВ, что на 15 порядков превышает энергии Большого адронного коллайдера.
Сначала для симметрии Великого объединения была предложена самая маленькая группа, содержащая группы симметрии Стандартной модели, — SU(5). Такие объединенные силы в общем случае допускают новые взаимодействия, позволяющие протонам распадаться. А если протоны нестабильны, значит, нестабильны и ядра атомов. В подобных теориях объединения время жизни протона может достигать 10 31 лет, существенно превышая возраст Вселенной на текущий момент. Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково. Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими.
В каждой молекуле воды 10 протонов, а в каждом литре воды около 10 25 молекул воды. Поэтому вместо того, чтобы ждать 10 31 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона. Текущие наблюдения (а точнее, отсутствие оных) намекают на то, что среднее время жизни протона больше 10 33 лет. Так что SU(5)-модель Великого объединения исключается.
Следующей была предложена группа побольше — SO(10), в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 10 36 лет, что на порядки превышает даже возможности будущих экспериментов.
Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены. Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем.
Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса. Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще. Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута.
Добавление суперсимметрии к Великому объединению не только еще больше увеличивает число симметрий — дополнительное преимущество в том, что это приводит к небольшому продлению времени жизни протона. Так, некоторые варианты суперсимметричной SU(5)-модели и поныне держатся на грани жизнеспособности. Тем не менее основная причина для добавления суперсимметрии заключается в числовом совпадении, которое мы обсуждали в четвертой главе, — в объединении констант взаимодействий (см. рис. 8).
Кроме того, теории Великого объединения имеют более строгую структуру, чем Стандартная модель, что добавляет им привлекательности. Скажем, теория электрослабого взаимодействия — это объединение неудовлетворительное, потому что в ней все еще есть две разные группы симметрии, U(1) и SU(2), и две соответствующие константы взаимодействий. Две эти константы связаны параметром, который носит название «слабый угол смешивания», и в Стандартной модели его значение должно определяться экспериментально. Однако в большинстве теорий Великого объединения структура групп фиксирует значение 3/8 для квадрата синуса слабого угла смешивания при энергиях Великого объединения. При экстраполяции в область низких энергий это согласуется с экспериментальными данными.
Многие физики думают, что эти числа не могут быть случайностью. Мне так часто говорили, что они просто обязаны что-то означать, что я и сама иногда верю, будто это так. Есть, правда, несколько «но», о которых вам следует знать.
Что самое важное: насколько точно константы взаимодействий сходятся к одному значению, зависит от энергии, при которой нарушается суперсимметрия. Если эта энергия выше примерно 2 ТэВ, схождение в одну точку начинает ухудшаться. Большой адронный коллайдер уже почти исключил возможность того, что область нарушения суперсимметрии лежит ниже этой энергии, — а тогда рассыпется одно из главных привлекательных свойств суперсимметрии. Более того, если мы так жаждем Великого объединения, нет никаких особых причин, заставляющих константы взаимодействий всем скопом совпадать при одной и той же энергии — сначала вполне могли бы совпасть две из них, а потом уже к ним присоединилась бы третья. Просто это не было бы так красиво, поскольку задействовало бы дополнительную область энергий.
Позвольте также упомянуть, что схождение в одну точку констант взаимодействий не связано исключительно с суперсимметрией. Это следствие добавления тяжелых частиц, которое начинает проявляться при высоких энергиях. Можно измыслить много других комбинаций дополнительных частиц, которые вынудят те кривые пересечься. В случае суперсимметрии мы не вольны выбирать дополнительные частицы, и физики считают, что эта жесткость свидетельствует в пользу теории. Более того, пересечение кривых в случае суперсимметрии стало неожиданностью, когда впервые было замечено. А как мы видели ранее, физики уделяют больше внимания неожиданным открытиям.
Вот какие есть «но». Впрочем, в пользу суперсимметрии говорит еще кое-что: некоторые из новых суперсимметричных частиц имели бы нужные свойства, чтобы составлять темную материю. Они должны были бы возникать в изобилии в ранней Вселенной, никуда не деваться, будучи стабильными, и взаимодействовать очень слабо.
Таким образом, теория суперсимметрии сочетает в себе все, что физики-теоретики выучились лелеять: симметрию, естественность, объединение и нежданные открытия. Суперсимметрия — это то, что биологи называют сверхстимулом, искусственным, но вызывающим непреодолимую тягу.
«Суперсимметрия предлагает решение всех этих проблем, которое явно проще, элегантнее и красивее, чем может предложить любая другая теория. Если наш мир суперсимметричен, то все кусочки пазла идеально подгоняются друг к другу. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. По мнению Майкла Пескина, автора одного из самых популярных учебников по квантовой теории поля, суперсимметрия — это «следующий шаг вперед к самой полной картине мира, где мы придаем всему симметрию и красоту». Дэвид Гросс называет теорию суперсимметрии «красивой, “естественной” и уникальной» и верит, что «Эйнштейн, если бы ознакомился с [теорией суперсимметрии], полюбил бы ее». И Фрэнк Вильчек доверяет природе, хотя и более настороженно: «Все эти подсказки могут быть обманчивы, но это было бы воистину жестокой шуткой матери-природы — и воистину бестактно с ее стороны».
Подробнее читайте:
Хоссенфельдер, С. Уродливая Вселенная: как поиски красоты заводят физиков в тупик / Сабина Хоссенфельдер ; [перевод с английского Алены Якименко]. — Москва: Бомбора, 2021. — 304 с. — (Сенсация в науке).
Источник