Меню

Самая дальняя точка вселенной от нас

Где находится самая дальняя точка Вселенной?

Наверняка вы не раз задумывались, глядя на ночное небо: «Что там? Как далеко всё это простирается?». Вы не одиноки в своём любопытстве. Мало того, вы в очень хорошей компании. Люди задавались вопросом, что там, за горизонтом, в течение всей истории существования своей цивилизации. И сегодня наука пытается ответить уже на более серьёзный вопрос: есть ли вообще край у Вселенной?

Здесь живут львы

Самые древние географические карты, дошедшие до наших дней, датируются шестым веком до нашей эры. Нельзя сказать, что на них помещалась сколько-нибудь значительная территория. Земля выглядела плоской, как если бы её срисовывали, находясь на высокой горе, находящейся в центре. Одним из первых о том, что наша планета на самом деле представляет собой сферу, приблизительно в 240 году до н.э. предположил древнегреческий учёный Эратосфен. Наблюдая за полуденным Солнцем, он вычислил окружность земли, ошибившись в итоге всего на 15%.

Тем не менее, в течение ещё сотен лет после него карты были «плоскими», а картографы были центрами этих миров, будь то Европа, Азия или даже Китай. По краям таких карт часто были примечания, вроде совершенно замечательного «здесь живут львы». Эти надписи обозначали неизведанные земли. Исследователи обменивались знаниями и «обнаруживали» места, уже почему-то заселённые людьми. Картина мира постепенно расширялась, пополняясь новыми красками. Карты приобрели окончательный вид в 20- годах позапрошлого века, с открытием Антарктиды. И неожиданно для всех краем карты оказалось небо!

Одна Вселенная – одна галактика

В 30-х годах того же века человечество обнаружило, что звёзды находятся гораздо дальше, чем планеты. Выяснилось это, когда астрономы измерили, насколько по-разному различные небесные тела перемещаются относительно своего фона — этот феномен называется «параллакс». Край карты теперь переместился за пределы Солнечной системы — дальше, вглубь галактики. И к началу 20 века человечество искренне считало, что вся Вселенная помещается в Млечный путь.

Но тут перед учёными встал вопрос: «Если одна звезда не такая яркая, как другая — она что, дальше? Или просто меньше?». На самой заре 20 века астроном Генриетта Суон Ливитт определила, что класс звёзд под названием Цефеиды пульсирует — становится то ярче, то тусклее. При этом звёзды, пульсирующие с одинаковой периодичностью, имеют одинаковую яркость. Если две цефеиды пульсируют синхронно, и одна из них тусклее другой, это значит, что одна из них ближе, а вторая — дальше. И так как расстояние до некоторых из этих объектов уже было известно, учёным удалось создать космический «мерный шест», как у геодезистов.

В 1925 году Эдвин Хаббл наблюдал за яркостью переменных звёзд в мутном пятне под названием Андромеда, и некоторые из них оказались совсем не такими яркими, как на то намекала ритмичность пульсации. Астроном вдруг осознал, что эти звёзды находятся слишком далеко, чтобы находиться внутри Млечного пути. Андромеда оказалась другой галактикой! Сейчас мы знаем, что свет этой «богини» — это самое дальнее из того, что мы можем увидеть невооружённым взглядом на ночном небе.

13 миллиардов световых лет?

Используя более зоркие «глаза», вроде того космического телескопа, что был назван в честь Эдвина Хаббла, мы увидели потрясающие картины, на которых каждая крошечная точечка была целой галактикой. Самая дальняя из них находилась на расстоянии в 13 миллиардов световых лет, и свет от неё — это самое древнее, что нам доводилось видеть. Глядя на неё, мы смотрим на то, как она выглядела, когда Вселенной было всего 400 миллионов лет. Ни Солнца, ни Земли тогда ещё не существовало и в помине.

Надо сказать, что мы видим эти дальние объекты не там, где они находятся конкретно в этот момент времени. Некоторые звёзды, в том числе и наше Солнце, излучают свет согласно определённым шаблонам, которые зависят от их атомного состава. Они называются «спектры поглощения» и являются своеобразными световыми отпечатками. Но если мы видим образцы на более длинных и красных длинах волн, чем ожидаем, то это говорит о том, что объект удаляется от нас, и его свет растягивается расширяющейся вселенной. Астрономы называют этот феномен почти по коммунистически — «красным смещением».

Читайте также:  Как будет по английскому вселенная

Итак, за то время, что свет доходит до нас от отдалённой галактики, она улетает от нас ещё дальше. Поэтому мы видим её гораздо более молодой и близкой, чем есть на самом деле. Представьте, что друг послал вам на электронную почту письмо, в котором написал, что едет в поезде и проезжает мост на границе вашего города. Но к тому времени, когда вы прочитаете это послание, он уже будет далеко от этого моста. Так вот, то космическое явление, которое мы объясняем, очень напоминает описанную ситуацию. Однако физика больших расстояний имеет свои странные особенности, и мы непременно должны учитывать их.

Что за пределом видимой Вселенной?

Свет, покинув галактику, находящуюся на расстоянии 13 миллиардов световых лет, доходит до нас, когда до неё уже 46 миллиардов. И чем дальше она расположена, тем быстрее летит прочь. Это значит, что где-то далеко-далеко есть некий предел, за которым космические объекты движутся быстрее скорости света — потому что само пространство расширяется с упомянутой скоростью. Свет, который испускают такие объекты, будет удаляться от нас, двигаясь в нашем же направлении! И мы никогда не сможем увидеть его.

Это и есть предел наблюдаемого нами космоса. Учёные почти на 100% уверены, что за ним находятся другие его части. Никто точно не знает, насколько велика Вселенная. Кто-то считает, что она раз в 250 больше наблюдаемой, другие рассчитали, что это 1222000 мегапарсек, что очень много, очень гипотетично, и очень нелепо. Третьи говорят, что никакого края нет как такового. Одна из теорий гласит, что ткань Вселенной может быть свёрнута в тор — это что-то вроде гигантского пончика с дырой внутри. Если она верна, то у Вселенной нет не только края, но и начала, и конца.

Так что пока мы не можем ответить на вопрос, где находится самая дальняя точка Вселенной. Однако нами движет то же самое любопытство, которое тысячи лет назад вдохновляло на открытия первых

составителей географических карт. Берегите это чувство, пытайтесь открывать для себя новое. Но будьте осмотрительны… Где-то там могут жить львы.

Источник

Насколько далека самая далекая галактика во Вселенной?

Вселенная — чертовски большое место. Когда мы смотрим на ночное небо, почти все, что видно невооруженному глазу, является частью нашей галактики: звездой, скоплением звезд, туманностью. За звездами Млечного Пути проглядывает, например, галактика Треугольника. Эти «островные миры» мы находим повсюду во Вселенной, куда ни глянь, даже в самых темных и пустых клочках пространства, если только сумеем собрать достаточно света, чтобы заглянуть достаточно глубоко.

Большинство этих галактик настолько далеки, что даже фотону, летящему на скорости света, потребуются миллионы или миллиарды лет, чтобы преодолеть межгалактическое пространство. Когда-то он был испущен поверхностью далекой звезды, а теперь он, наконец, добрался до нас. И хотя скорость в 299 792 458 метров в секунду кажется невероятной, тот факт, что мы прошли всего 13,8 миллиарда лет со времен Большого Взрыва, означает, что расстояние, которое преодолел свет, все же конечно.

Вы, наверное, думаете, что самая далекая галактика от нас должна быть не дальше, чем в 13,8 миллиарда световых лет от нас, но это было бы ошибкой. Видите ли, кроме того, что свет движется с конечной скоростью через Вселенную, есть и другой, менее очевидный факт: ткань самой Вселенной расширяется с течением времени.

Читайте также:  Если вселенная конечна то что за ее пределами

Галактика EGS8p7 в настоящее время является рекордсменом по удаленности. С измеренным красным смещением в 8,63, наша реконструкция Вселенной подсказывает нам, что свету этой галактики потребовалось 13,24 миллиарда лет, чтобы добраться до нас. Еще немного математики, и мы обнаружим, что видим этот объект, когда Вселенной было всего 573 миллиона лет, всего 4% от ее текущего возраста.

Зеркало Хаббла по сравнению с зеркалом Джеймса Вебба

Но не думайте, что эта галактика самая далекая из самых далеких галактик, которые мы когда-либо увидим. Мы видим галактики на таком расстоянии настолько, насколько нам позволяет наше оборудование и Вселенная: чем меньше нейтрального газа, чем больше и ярче галактика, чем чувствительнее наш инструмент, тем дальше мы видим. Через несколько лет космический телескоп Джеймса Вебба сможет заглянуть еще дальше, поскольку будет способен улавливать свет большей длины волны (и, следовательно, с большим красным смещением), сможет видеть свет, который не блокируется нейтральным газом, сможет видеть более тусклые галактики, чем наши современные телескопы (Хаббл, Спитцер, Кек).

В теории самые первые галактики должны появиться с красным смещением в 15-20.

Источник

Найдена самая далекая и древняя галактика во Вселенной

Команда астрономов использовала телескоп Keck I, чтобы измерить расстояние до древней галактики. Ученые пришли к выводу, что целевая галактика GN-z11, не только самая старая, но и самая далекая.

Галактика GN-z11 настолько далека, что определяет саму границу наблюдаемой Вселенной. Команда ученых надеется, что новое исследование прольет свет на период космологической истории, когда Вселенной было всего несколько сотен миллионов лет.

Профессор Нобунари Касикава с факультета астрономии Токийского университета долго искал самую далекую из галактик, которая доступна для наблюдений, чтобы узнать, как и когда она появилась.

«Судя по предыдущим исследованиям, галактика GN-z11 кажется самой далекой от нас обнаруживаемой галактикой. Она находится на расстоянии 13,4 млрд световых лет или 134 нониллиона километров (это 134 с 30 нулями)», — объясняет Кашикава. — Но измерить и проверить такое расстояние — непростая задача».

Кашикава и его команда измерили красное смещение GN-z11. Напомним, космологическое (метагалактическое) красное смещение — наблюдаемое для всех далёких источников (галактики, квазары) понижение частот излучения, объясняемое как динамическое удаление этих источников друг от друга и, в частности, от Млечного Пути.

Чтоб изучить GN-z11, ученые использовали наземный спектрограф, прибор для измерения эмиссионных линий, названный MOSFIRE, который установлен на телескопе Keck I на Гавайях.

Напомним, эмиссионный спектр, спектр излучения, спектр испускания — это относительная интенсивность электромагнитного излучения объекта исследования по шкале частот. Обычно изучается в инфракрасном, видимом и ультрафиолетовом диапазоне от сильно нагретого вещества.

MOSFIRE детально зафиксировал эмиссионные линии GN-z11, что позволило команде сделать гораздо более точную оценку расстояния до галактики. Как отмечает Кашикава, при работе с расстояниями в этих масштабах неразумно использовать наши знакомые единицы километров или даже кратные им. Вместо этого астрономы используют другое значение — число красного смещения, обозначаемое z.

Кашикава и его команда повысили точность значения z галактики в 100 раз. Если последующие наблюдения подтвердят это, астрономы могут с уверенностью сказать, что GN-z11 — самая дальняя галактика, когда-либо обнаруженная во Вселенной.

Источник

Самая далекая из всех известных звезд

Бесконечные дали и огромные расстояния становятся доступными в поле зрения современной техники. И астрономы теперь нацелены на небесные тела, которые находятся невообразимо далеко от нас. Но какая же звезда на сегодняшний день является рекордсменом по удаленности от Земли?

На этом снимке телескопа «Хаббл» самая далекая известная звезда видна как точка света. Фото: NASA, ESA, and P. Kelly (University of Minnesota)

Обычно астрономы могут различать отдельные звезды, выделяя их из звездных скоплений, на расстоянии до 100 миллионов световых лет — даже лучшие телескопы пока что не могут сделать больше. Но благодаря космической удаче, ученым удался более глубокий взгляд в космическую бездну. И теперь можно утверждать: самая дальняя звезда, из когда-либо увиденных ранее, — это голубой сверхгигант в девяти миллиардах световых лет от нас. Это наблюдение стало возможным благодаря тому обстоятельству, что скопление галактик на переднем плане очень сильно усилило свет этой звезды.

Читайте также:  Вселенная как клетка мозга

Во вселенной существуют миллиарды звезд, но астрономы обычно имеют возможность увидеть только те, которые находятся в нашем относительном космическом соседстве. На расстояниях примерно от 100 миллионов световых лет их свет доходит до нас уже слишком слабым, чтобы звезды можно было рассмотреть по отдельности даже с помощью самых мощных телескопов. Но иногда на помощь астрономам приходит счастливый случай, который зачастую и предусмотреть заранее невозможно: на передний план перед далеким источником света выплыла массивная галактика или галактическое скопление. Невероятная гравитация этого объекта переднего плана привела к тому, что свет удаленных объектов исказился и усилился — то есть она сыграла роль гигантской космической увеличительной линзы. Этот эффект гравитационной линзы делает видимыми галактики, сверхновые и другие источники яркого света, которые чрезвычайно далеки и, следовательно, очень стары.

Расстояние в девять миллиардов световых лет

Астрономы команды во главе с Патриком Келли из Университета Миннесоты смогли сделать свое рекордное открытие именно благодаря такой гравитационной линзе. Когда они нацелили космический телескоп «Хаббл» на скопления галактик MACS J1149 + 2223, удаленное от нас на пять миллиардов световых лет, они просто хотели поближе и подробнее рассмотреть далекую сверхновую. Оказалось, что этот звездный взрыв произошел в спиральной галактике за девять миллиардов световых лет от нас, непосредственно позади галактического скопления. Фактически, галактический кластер действовал как гравитационная линза, усиливая свет сверхновой.

Но, к своему удивлению, исследователи обнаружили там и вторую обращающую на себя внимание точку света. Как оказалось, это была одна необычно яркая звезда в той же галактике, что и сверхновая. А благодаря гравитационной линзе на переднем плане, ее свет был усилен в две тысячи раз. Этот свет стал видимым для телескопа, хотя и находился на расстоянии около девяти миллиардов световых лет от него. То есть в обычном случае ни один телескоп не был бы в состоянии различить свет этой звезды. «Эта звезда как минимум в 100 раз дальше, чем самая дальняя звезда, которую мы когда-либо могли наблюдать», — говорит Келли. Свет звезды происходит из периода лишь в 4,4 миллиарда лет после Большого взрыва.

Голубой гигант в двойном увеличении

Как сообщают астрономы, звезда под названием Lensed Star 1 (LS1) была увеличена не только общей гравитацией галактического скопления, но и неким тяжелым объектом в ней. Такое явление астрономы называют гравитационным микролинзированием. «Мы знаем, что это микролинзирование было вызвано звездой, нейтронной звездой или звездной черной дырой», — говорит соавтор исследования Стивен Родни из Университета Южной Каролины. Этот объект по своей массе равен примерно трем солнечным массам. Поскольку звезда находилась точно за этим объектом, обычно лишь примерно 50-кратное увеличение, достигаемое через скопления галактик, в этом случае усилилось до 2000-кратного — и только тогда удалось увидеть звезду LS1.

Из спектра света объекта LS1 астрономы пришли к выводу, что эта далекая звезда представляет собой голубой супергигант — голубоватую массивную звезду, поверхность которой нагрета до 11 000 — 14 000 градусов по Цельсию — более чем в два раза горячее Солнца. Такие звезды способны сиять в сотни тысяч раз ярче нашего Солнца. Тем не менее, без космического счастливого случая с эффектом двойной линзы звезда LS1 так и осталась бы невидимой для земных астрономов.

Источник

Adblock
detector