Меню

Самая внешняя часть атмосферы солнца это

Строение Солнца. 2. Атмосфера

Атмосфера солнца
4а.Фотосфера
Фотосфера — это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000°С , а у верхней границы, расположенной примерно в 300км выше, порядка 5000°С. Средняя температура фотосферы принимается в 5700°С. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом (видимом) диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.

Через прозрачный воздух фотосферы в телескоп отчетливо просматривается ее основание — контакт с массой непрозрачного воздуха конвективной области. Поверхность раздела имеет зернистую структуру, называемую грануляцией. Зерна, или гранулы, имеют поперечники от 700 до 2000км. Положение, конфигурация и размеры гранул меняются. Наблюдения показали, что каждая гранула в отдельности выражена лишь какое-то короткое время (около 5-10 мин.), а затем исчезает, заменяясь новой гранулой. На поверхности Солнца гранулы не остаются неподвижными, а совершают нерегулярные движения со скоростью примерно 2 км/с. В совокупности светлые зерна (гранулы) занимают до 40% поверхности солнечного диска.

Процесс грануляции представляется как наличие в самом нижнем слое фотосферы непрозрачного газа конвективной области — сложной системы вертикальных круговоротов. Светлая ячея — это поступающая из глубины порция более разогретого газа по сравнению с уже охлажденной на поверхности, а потому и менее яркой, компенсационно погружающейся вниз. Яркость гранул на 10-20 процентов больше окружающего фона указывает на различие их температур в 200-300°С.

Образно грануляцию на поверхности Солнца можно сравнить с кипением густой жидкости типа расплавленного гудрона, когда со светлыми восходящими струями появляются пузырьки воздуха, а более темные и плоские участки характеризуют погружающиеся порции жидкости.

Исследования механизма передачи энергии в газовом шаре Солнца от центральной области к поверхности и ее излучение в космическое пространство показали, что она переносится лучами. Даже в конвективной зоне, где передача энергии осуществляется движением газов, большая часть энергии переносится излучением.

Таким образом, поверхность Солнца, излучающая энергию в космическое пространство в световом диапазоне спектра электромагнитных волн, — это разреженный слой газов фотосферы и просматривающаяся сквозь нее гранулированная верхняя поверхность слоя непрозрачного газа конвективной области. В целом зернистая структура, или грануляция, признается свойственной фотосфере — нижнему слою солнечной атмосферы.

4б.Хромосфера Солнца
При полном солнечном затмении у самого края затемненного диска Солнца видно розовое сияние — это хромосфера. Она не имеет резких границ, а представляет собой сочетание множества ярких выступов или языков пламени, находящихся в непрерывном движении. Хромосферу сравнивают иногда с горящей степью. Языки хромосферы называют спикулами. Они имеют в поперечнике от 200 до 2000км (иногда до 10.000км) и достигают в высоту нескольких тысяч километров. Их надо представлять себе как вырывающиеся из Солнца потоки плазмы (раскаленного ионизированного газа).

Установлено, что переход от фотосферы к хромосфере сопровождается скачкообразным повышением температуры от 5700°С до 8000 — 10000°С. К верхней же границе хромосферы, находящейся приблизительно на высоте 14.000км от поверхности Солнца, температура повышается до 15000 — 20000°С. Плотность вещества на таких высотах составляет всего 10-12 г/см3, т.е. в сотни и даже тысячи раз меньше, чем плотность нижних слоев хромосферы.

4с.Солнечная корона
Солнечная корона — внешняя атмосфера Солнца. Некоторые астрономы называют ее атмосферой Солнца. Она образована наиболее разреженным ионизированным газом. Простирается примерно на расстояние 5 диаметров Солнца, имеет лучистое строение, слабо светится. Ее можно наблюдать только во время полного солнечного затмения. Яркость солнечной короны примерно такая же, как у Луны в полнолуние, что составляет лишь около 5/1000.000 долей яркости Солнца. Корональные газы в высокой степени ионизированы, что определяет их температуру примерно в 1млн. градусов. Внешние слои короны излучают в космическое пространство корональный газ — солнечный ветер. Это второй энергетический (после лучистого электромагнитного) поток Солнца, получаемый планетами. Скорость удаления коронального газа от Солнца возрастает от нескольких километров в секунду у короны до 450 км/с на уровне орбиты Земли, что связано с уменьшением силы притяжения Солнца при увеличении расстояния. Постепенно разреживаясь по мере удаления от Солнца, корональный газ заполняет все межпланетное пространство. Он воздействует на тела Солнечной системы как непосредственно, так и через магнитное поле, которое несет с собой. Оно взаимодействует с магнитными полями планет. Именно корональный газ (солнечный ветер) является основной причиной полярных сияний на Земле и активности других процессов магнитосферы.

Источник

Строение и атмосфера Солнца. Солнечный ветер

Из чего состоит Солнце, почему мы не видим солнечную корону и что такое солнечный ветер

Солнце языком цифр

Солнце, несмотря на то, что числится по классификации звезд “желтым карликом” так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера – это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества Солнечной системы приходится на Солнце – это просто выходит за рамки понимания.

Читайте также:  Решение мореходной астрономии по солнцу

За прошедшие годы мы немало узнали о том как устроена “наша” звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.

Сравнение размеров Солнца с размерами планет Солнечной системы

Знание физики и возможности спектрального анализа дают нам возможность точно сказать, из чего состоит Солнце: 70% от его массы составляет водород, 27% – гелий, другие элементы (углерод, кислород, азот, железо, магний и другие) – 2,5%.

Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.

Что находится внутри Солнца

Согласно современным расчетам температура в недрах Солнца достигает 15 – 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.

Источник энергии Солнца – постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
“Зона ядерного синтеза” Солнца называется солнечным ядром и имеет радиус примерно 150—175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз – плотность самого плотного вещества на Земле: осмия.

Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл. На Солнце преимущественно протекает водородный цикл, который можно разбить на три этапа:

  • ядра водорода превращаются в ядра дейтерия (изотоп водорода)
  • ядра водорода превращаются в ядра неустойчивого изотопа гелия
  • продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).

Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.

Внутреннее строение недр Солнца: ядро, зона конвекции, фото и хромосфера, солнечная корона

Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.

Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции – перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.

Атмосфера Солнца

Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.

Фотосферой называют нижний слой солнечной атмосферы – видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).

На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.

Хромосфера – второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений – интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.

Солнечная корона – последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой – с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.

Солнечная корона во всей красе видна только по время солнечных затмений

Солнечный ветер

Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.

Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.

Читайте также:  Чехол от солнца для прадо 150

Именно солнечный ветер нещадно “треплет” атмосферу планет, “выдувая” содержащиеся в ней газы в открытый космос, он же во многом ответственен за “хвосты” комет. Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние, сопровождаемое магнитными бурями.

Впрочем, неоспорима и польза солнечного ветра – именно он “сдувает” из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.

Глядя на красоту полярных сияний, трудно поверить, что эти всполохи – видимый признак солнечного ветра и магнитосферы Земли

Источник

Самая внешняя часть атмосферы солнца это

Хромосфера (греч. «сфера цвета») названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяженность хромосферы 10-15 тыс. километров.
Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.
Часто во время затмений (а при помощи специальных спектральных приборов — и не дожидаясь затмений) над поверхностью Солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Они бывают непожвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами.

Наиболее распространены «спокойные» протуберанцы, появление которых обычно связано с развитием группы пятен, но существуют они значительно дольше пятен (до 1 года). Непосредственно в зоне пятен наблюдаются после вспышек, протуберанцы солнечных пятен — потоки газа, втекающего из короны в зону пятен со скоростями в неск. десятков км/с. Другой вид протуберанцев связан с выбросами вещества вверх (обычно после вспышек) со скоростями 100-1000 км/с (быстрые эруптивные протуберанцы).
НАШЕ СОЛНЦЕ

Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.
Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.
Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих ее газов.
Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки (самые мощные взрывоподобные процессы, могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 10 25 Дж). Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.
Пятна, факелы, протуберанцы, хромосферные вспышки — все это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.
Солнечная атмосфера — корона

Солнце освещает и согревает нашу планету, без этого была бы невозможна жизнь на ней не только человека, но даже микроорганизмов. Солнце — главный (хотя и не единственный) двигатель происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц оказывают постоянное влияние на ее жизнь.
Солнце посылает на Землю электромагнитные волны всех областей спектра — от многокилометровых радиоволн до гамма-лучей. Окрестностей Земли достигают также заряженные частицы разных энергий — как высоких, так и низких и средних. Наконец, Солнце испускает мощный поток элементарных частиц — нейтрино. Однако воздействие последних на земные процессы пренебрежительно мало: для этих частиц земной шар прозрачен, и они свободно сквозь него пролетают. Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле). Но их энергии достаточно для того, чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты.
Электромагинтное возмущение подвергается строгому отбору в земной атмосфере. Она прозрачна только для видимого света и ближайших ультрафиолетового и инфракрасного излучения, а также для радиоволн в сравнительно узком диапазоне (от сантиметровых до метровых). Все остальное излучение либо отражается, либо поглощается атмосферой, нагревая и ионизуя ее верхние слои.
Поглощение рентгеновских и жестких ультрафиолетовых лучей начинается на вымотах 300-350 км; на этих же высотах отражаются наиболее длинные радиоволны, приходящие из космоса. При сильных всплесках солнечного рентгеновского излучения от хромосферных вспышек рентгеновские кванты проникают до высот 80-100 км от поверхности Земли, ионизуют атмосферу и вызывают нарушение связи на коротких волнах.

Читайте также:  Война под солнцем для
Темные, зловещего вида области в левой части солнечного диска — это так называемые корональные дыры. Эти области, располагающиеся над поверхностью, где силовые линии солнечного магнитного поля уходят в межпланетное пространство, характеризуются пониженным давлением. Корональные дыры начали интенсивно изучать со спутников начиная с 1960-х годов в ультрафиолетовом и рентгеновском свете. Известно, что они являются источниками интенсивного солнечного ветра, который состоит из атомов и электронов, улетающих от Солнца вдоль разомкнутых силовых линий магнитного поля.
НАШЕ СОЛНЦЕ

Мягкое (длинноволновое) ультрафиолетовое излучение способно проникать еще глубже, оно поглощается на высоте 30-35 км. Здесь ультрафиолетовые кванты разбивают на атомы молекулы кислорода с последующим образованием озона. Тем самым создается не прозрачный для ультрафиолета «озоновый экран», предохраняющий жизнь на Земле от гибельных лучей. Не поглотившаяся часть наиболее длинноволнового ультрафиолетового излучения доходит до земной поверхнсти. Именно эти лучи вызывают у людей загар.
Излучение в видимом диапазоне поглощается слабо. Однако оно рассеивается атмосферой даже в отсутствие облаков, и часть его возвращается в межпланетное пространство. Облака, состоящие из капелек воды и твердых частиц, значительно усиливают отражение солнечного излучения. В результате до поверхности планеты доходит в среднем около половины падающего на границу земной атмосферы света.
Количество солнечной энергии, приходящейся на поверхность площадью 1 кв метр, развернутую перпендикулярно солнечным лучам на границе земной атмосферы, называется солнечной постоянной. Измерять ее с Земли очень трудно, и потому значения, найденные до начала космических исследований, были весьма приблизительными. Небольшие колебания (если они реально существовали) заведомо «тонули» в неточности измерений. Лишь выполнение специальной космической программы по определению солнечной постоянной позволило найти ее надежное значение. По последним данным, оно составляет 1370 Вт/м 2 с точностью до 0,5%. Колебаний, превышающих 0,2%, за время измерений не выявлено.
На Земле излучение поглощается сушей и океаном. Нагретая земная поверхность в свою очередь излучает в длинноволновой инфракрасной области. Для такого излучения азот и кислород атмосферы прозрачны. Зато оно жадно поглощается водяным паром и углекислым газом. Благодаря этим малым составляющим воздушная оболочка удерживает тепло. В этом и заключается парниковый эффект атмосферы. Между приходом солнечной энергии на Землю и ее потерями на планете в общем существует равновесие: сколько поступает, столько и расходуется. В противном случае температура земной поверхности вместе с атмосферой либо постоянно повышалась бы, либо падала.
Солнечная активность

Солнечная активность — все явления солнечной активности связаны с выходом на поверхность Солнца магнитных полей. Уже первые измерения эффекта Зеемана, проведённые в начале 20 в., показали, что поля в пятнах характеризуются напряжённостью порядка нескольких тыс. эрстед, причём такие поля реализуются в областях с диаметром 20 000 км. Современные приборы для измерения полей на Солнце позволяют не только измерять величину поля с точностью до 1 Э, но и судить об углах наклона вектора напряжённости магнитного поля. Выяснено, например, что факелы представляют собой области с полями 5-300 Э. В тени пятен поля достигают 1000-4500 Э. В центре пятна поле направлено вверх, вдоль радиуса Солнца, но к периферии его наклон увеличивается, и в полутени поле уже практически параллельно солнечной поверхности . Поле сосредоточено в отдельных жгутах.

Источник

Adblock
detector