Самое тяжелое вещество во Вселенной
Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в царской водке. После химического опыта в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.
Самый тяжёлый элемент на планете
Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире — это осмий.
Дороже золота и алмазов
Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.
Плотность материи за пределами планеты Земля
Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.
Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда космических объектов настолько велика, что вещество неимоверно уплотняется.
Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие космические тела находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.
Нейтронные звезды – сверхплотные объекты космоса
В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.
Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в сверхновые звезды с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.
Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.
В результате, чтобы плотность Земли сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.
Слои и плотность вещества
Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.
Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.
Ядро нейтронной звезды и его плотность
Ниже находится ядро, именно здесь плотность достигает своего максимума — в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.
Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.
Чёрные дыры во Вселенной
Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной — их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.
К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.
Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.
Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.
Источник
10 самых маленьких частиц во Вселенной
Ответ на постоянный вопрос о самой маленькой вещи во Вселенной развился вместе с человечеством. Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг.
Затем был открыт атом. Концепция атомов была впервые предложена греками, которые полагали, что объекты могут быть бесконечно разделены на две части, пока не останется одна неделимая частичка материи. Эта невообразимо малая единица не могла быть разделена дальше и поэтому называлась «атомом», образованным от греческого слова A-tomos. Где «А» означает «нет» и «томос» – делить.
Он считался неделимым, пока он не раскололся, чтобы обнаружить протоны, нейтроны и электроны внутри. Они тоже казались фундаментальными частицами, прежде чем ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.
Так какие же из частиц являются самыми маленькими во Вселенной?
10. Электрон
Электрон – отрицательно заряженная субатомная частица. Он может быть свободным (не привязанным к какому-либо атому) или связанным с ядром атома. Электроны в атомах существуют в сферических оболочках различного радиуса, представляющих энергетические уровни. Чем больше сферическая оболочка, тем выше энергия, содержащаяся в электроне электрических проводниках поток тока возникает в результате движения электронов от атома к атому в отдельности и от отрицательных к положительным электрическим полюсам в целом. В полупроводниковых материалах ток также возникает как движение электронов.
9. Позитрон
Позитроны – это античастицы электронов. Основным отличием от электронов является их положительный заряд. Позитроны образуются при распаде нуклидов, в ядре которых имеется избыток протонов по сравнению с числом нейронов, когда происходит распад, эти радионуклиды испускают позитрон и нейтрино.
В то время как нейтрино выходит без взаимодействия с окружающим веществом, позитрон взаимодействует с электроном. Во время этого процесса аннигиляции массы позитрона и электрона превращаются в два фотона, которые расходятся в почти противоположных направлениях.
8. Протон
Протонная стабильная субатомная частица с положительным зарядом, равным по величине единице заряда электрона и массой покоя 1,67262 × 10 -27 кг.
Около десяти лет назад казалось, что и спектроскопия, и эксперименты по рассеянию сходились на протонном радиусе 0,8768 фемтометров (миллионные доли миллионной доли миллиметра).
Но в 2010 году новый поворот в спектроскопии поставил под сомнение этот идиллический консенсус. Команда измерила протонный радиус 0,84184 фемтометров.
7. Нейтрон
Вы знаете, что нейтроны находятся в ядре атома. В нормальных условиях протоны и нейтроны слипаются в ядре. Во время радиоактивного распада они могут быть выбиты оттуда. Нейтронные числа способны изменять массу атомов, потому что они весят примерно столько же, сколько протон и электрон вместе.
Нейтроны можно найти практически во всех атомах вместе с протонами и электронами. Водород -1 является единственным исключением. Атомы с одинаковым количеством протонов, но с разным количеством нейтронов называются изотопами одного и того же элемента.
Количество нейтронов в атоме не влияет на его химические свойства. Однако это влияет на его период полураспада, меру его стабильности. Нестабильный изотоп имеет короткий период полураспада, при котором половина его распадается на более легкие элементы.
6. Фотон
Представьте себе луч желтого солнечного света, сияющего через окно. Согласно квантовой физике, этот луч состоит из миллиардов крошечных пакетов света, называемых фотонами, которые текут по воздуху. Но что такое фотон?
Фотон – это наименьшее дискретное количество или квант электромагнитного излучения. Это основная единица всего света.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью всем наблюдателям 2,998 × 10 8 м/с. Обычно это называют скоростью света, обозначаемой буквой с.
Согласно квантовой теории света Эйнштейна, фотоны имеют энергию, равную частоте их колебаний, умноженной на постоянную Планка. Эйнштейн доказал, что свет – это поток фотонов, энергия этих фотонов – это высота частоты их колебаний, а интенсивность света соответствует количеству фотонов.
5. Кварк
Кварк – одна из фундаментальных частиц в физике. Они соединяются, чтобы сформировать адроны, такие как протоны и нейтроны, которые являются компонентами ядер атомов.
Кварк имеет ограничение, что означает, что кварки не наблюдаются независимо, но всегда в сочетании с другими кварками. Это делает невозможным непосредственное измерение свойств (массы, спина и четности); эти черты должны быть выведены из частиц, состоящих из них.
4. Глюон
Спустя миллионную долю секунды после Большого взрыва Вселенная была невероятно плотной плазмой, настолько горячей, что не могло существовать ни ядер, ни даже ядерных частиц.
Плазма состояла из кварков, частиц, которые составляют нуклоны и некоторые другие элементарные частицы, и глюонов, безмассовых частиц, которые «переносят» силу между кварками.
Глюоны – это обменные частицы для цветовой силы между кварками, аналогичные обмену фотонов в электромагнитной силе между двумя заряженными частицами. Глюон можно считать фундаментальной обменной частицей, лежащей в основе сильного взаимодействия между протонами и нейтронами в ядре.
3. Мюон
Мюоны имеют такой же отрицательный заряд, как и электроны, но в 200 раз больше массы. Они возникают, когда частицы высокой энергии, называемые космическими лучами, врезаются в атомы в атмосфере Земли.
Путешествуя со скоростью, близкой к скорости света, мюоны осыпают Землю со всех сторон. Каждая область планеты размером с руку поражена примерно одним мюоном в секунду, и частицы могут пройти через сотни метров твердого материала, прежде чем они будут поглощены.
По словам Кристины Карлогану, физика из Физической лаборатории Клермон-Феррана во Франции, их вездесущность и проникающая способность делают мюоны идеальными для визуализации больших плотных объектов без их повреждения.
2. Нейтрино
Нейтрино – это субатомная частица, которая очень похожа на электрон, но не имеет электрического заряда и очень маленькой массы, которая может даже быть нулевой.
Нейтрино являются одной из самых распространенных частиц во Вселенной. Однако, поскольку они очень мало взаимодействуют с материей, их невероятно сложно обнаружить.
Для обнаружения нейтрино требуются очень большие и очень чувствительные детекторы. Как правило, нейтрино с низкой энергией проходит через многие световые годы нормальной материи, прежде чем взаимодействовать с чем-либо.
Следовательно, все наземные нейтринные эксперименты основаны на измерении крошечной доли нейтрино, которые взаимодействуют в детекторах разумного размера.
1. Бозон Хиггса
Физике частиц обычно тяжело конкурировать с политикой и сплетнями знаменитостей за заголовки, но бозон Хиггса привлек серьезное внимание. Возможно, знаменитое и неоднозначное прозвище знаменитого бозона, «Частица Бога», заставляло гудеть средства массовой информации.
С другой стороны, интригующая возможность того, что бозон Хиггса отвечает за всю массу во Вселенной, захватывает воображение.
Бозон Хиггса является, если не сказать, самой дорогой частицей всех времен. Это немного несправедливое сравнение; например, для открытия электрона потребовалось немного больше, чем для вакуумной трубки и настоящего гения, а для поиска бозона Хиггса потребовалось создание экспериментальных энергий, которые раньше редко встречались на планете Земля.
Источник