Меню

Самые долгоживущие звезды во вселенной

10 рекордсменов среди звезд

Перефразируя высказывание известного классика, можно сказать, что все счастливые звезды похожа одна на другую, а у самых невероятных из них и проблемы своеобразные. Вселенная полна звезд. Но даже среди всего этого неописуемого разнообразия встречаются образцы, достойные внимания.

Звезды-долгожители

Как долго может жить звезда? Для начала давайте определимся: под временем жизни звезды мы подразумеваем ее способность осуществлять ядерный синтез. Потому что «труп звезды» может долго висеть и после окончания синтеза.

Как правило, чем менее массивна звезда, тем дольше она будет жить. Звезды с наименьшей массой — это красные карлики. Они могут быть с массой от 7,5 до 50 процентов солнечной. Все, что менее массивно, не может совершать ядерный синтез — и не будет звездой. Современные модели предполагают, что самые мелкие красные карлики могут светить до 10 триллионов лет. Сравните это с нашим Солнцем, синтез в котором будет длиться приблизительно 10 миллиардов лет — в тысячу раз меньше. После синтеза большей части водорода, согласно теории, легкий красный карлик станет голубым карликом, а когда остатки водорода будут исчерпаны, синтез в ядре остановится, и карлик станет белым.

Самые старые звезды

Самая старая из наблюдаемых звезд — это SMSS J031300.36-670839.3. О ее открытии сообщили в феврале 2014 года. Ее возраст оценивается в 13,6 миллиарда лет, и это все еще не одна из первых звезд. Такие звезды еще не обнаружены, но они точно могут быть. Красные карлики, как мы отмечали, живут триллионы лет, однако их весьма сложно обнаружить. В любом случае, даже если такие звезды и есть, искать их — как иголку в стоге сена.

Самые тусклые звезды

Если мы ограничимся звездами, которые все еще в процессе синтеза, то самая низкая светимость — у красных карликов. Самой холодной звездой с самой низкой светимостью в настоящее время является красный карлик 2MASS J0523-1403. Чуть меньше света — и мы попадем в царство коричневых карликов, которые уже не являются звездами.

Еще могут быть остатки звезд: белые карлики, нейтронные звезды и черные дыры. Насколько тусклыми они могут быть? Белые карлики чуть светлее, но остывают в течение долгого времени. Через определенное время они превращаются в холодные куски угля, практически не излучающие свет — становятся «черными карликами». Чтобы остыть, белым карликам нужно очень много времени, поэтому их пока просто нет.

Астрофизики пока не знают, что происходит с веществом нейтронных звезд, когда они остывают. Наблюдая за сверхновыми в других галактиках, они могут предположить, что в нашей галактике должно было сформироваться несколько сотен миллионов нейтронных звезд, однако пока была зафиксирована лишь малая часть от этого числа. Остальные должны были остыть настолько, что стали попросту невидимыми.

А что насчет черных дыр в глубоком межгалактическом пространстве, на орбите которых ничего нет? Они все еще выделяют немного излучения, известного как излучение Хокинга, но его не так много. Такие одинокие черные дыры, наверное, светятся меньше, чем остатки звезд. Существуют ли они? Возможно.

Самые яркие звезды

Самой яркой на сегодняшний день звездой (и самой массивной) считается светило R136a1. О ее открытии было объявлено в 2010 году. Это звезда Вольфа-Райе со светимостью примерно в 8 700 000 солнечной и массой в 265 раз большей, чем наша родная звезда. Когда-то ее масса составляла 320 солнечных.

R136a1 фактически является частью плотного скопления звезд под названием R136. По словам Пола Кроутера, одного из первооткрывателей, «планетам нужно больше времени для формирования, чем такой звезде — жить и умереть. Даже если бы там были планеты, никаких астрономов на них не было бы, потому что ночное небо было таким же ярким, как и дневное».

Читайте также:  Как соотносятся между собой понятия мир материя вселенная

Самые крупные звезды

Наиболее известные красные сверхгиганты — это Альфа Антареса и Бетельгейзе, однако и они довольно малы по сравнению с самыми крупными. Найти самый большой красный сверхгигант — весьма бесплодная затея, потому что точные размеры таких звезд весьма трудно оценить наверняка. Самые крупные должны быть в 1500 раза шире Солнца, а может и больше.

Звезды с самыми яркими взрывами

Что вызывает взрывы гамма-лучей? Догадок масса. Сегодня большинство предположений сводится к взрывам массивных звезд (сверхновых или гиперновых) в процессе превращения в нейтронные звезды или черные дыры. Некоторые гамма-всплески вызваны магнетарами, своего рода нейтронными звездами с очень сильным магнитным полем. Другие гамма-всплески могут быть результатом слияния двух нейтронных звезд в одну или падения звезды в черную дыру.

Самые крутые бывшие звезды

Черная дыра — это то, что образуется, когда гравитация звезды достаточно сильная, чтобы преодолеть все другие силы и заставить звезду коллапсировать саму в себя до точки сингулярности. С ненулевой массой, но нулевым объемом такая точка в теории будет обладать бесконечной плотностью. Однако бесконечности в нашем мире встречаются редко, поэтому у нас просто нет хорошего объяснения тому, что происходит в центре черной дыры.

Черные дыры могут быть чрезвычайно массивными. Черные дыры, обнаруженные в центрах отдельных галактик, могут быть в десятки миллиардов солнечных масс. Более того, материя на орбите сверхмассивных черных дыр может быть очень яркой, ярче всех звезд галактик. Вблизи черной дыры могут быть также мощные джеты, движущиеся почти со скоростью света.

Самые быстродвижущиеся звезды

Были обнаружены и другие стремительные звезды. Они известны как гиперзвуковые звезды (hypervelocity stars), или сверхбыстрые звезды. По состоянию на середину 2014 года было обнаружено 20 таких звезд. Большинство из них, похоже, приходит из центра галактики. Согласно одной из гипотез, пара тесно связанных звезд (бинарная система) прошла рядом с черной дырой в центре галактики, одна звезда была захвачена черной дырой, а другая — выброшена с высокой скоростью.

Есть звезды, которые движутся еще быстрее. На самом деле, говоря в общем, чем дальше звезда от нашей галактики, тем быстрее она удаляется от нас. Это связано с расширением Вселенной, а не движением звезды в космосе.

Самые переменные звезды

По словам профессора астрофизики Коэля Хелье, самыми переменными из таких звезд являются катаклизмические, или взрывные, переменные звезды. Их яркость может увеличиваться на фактор 100 в течение дня, уменьшаться, снова увеличиваться и так далее. Такие звезды пользуются популярностью у астрономов-любителей.

Сегодня у нас есть хорошее понимание того, что происходит с катаклизмическими переменными звездами. Они представляют собой бинарные системы, в которых одна звезда — обычная, а другая представляет собой белый карлик. Материя обычной звезды падает на аккреционный диск, который вращается вокруг белого карлика. После того как масса диска будет достаточно высокой, начинается синтез, в результате чего наблюдается увеличение яркости. Постепенно синтез иссякает и процесс начинается снова. Иногда белый карлик разрушается. Вариантов развития хватает.

Самые необычные звезды

Как, например, объекты Торна-Житков. Названы они в честь физиков Кипа Торна и Анны Житков, которые впервые предположили их существование. Их идея заключалась в том, что нейтронная звезда может стать ядром красного гиганта или сверхгиганта. Идея невероятная, но… такой объект недавно был обнаружен.

Иногда две большие желтые звезды кружат настолько близко друг к другу, что независимо от материи, которая находится между ними, похожи на гигантский космический арахис. Известны только две такие системы.

Звезда Пшибыльского иногда приводится как пример необычной звезды, потому что ее звездный свет отличается от света любой другой звезды. Астрономы измеряют интенсивность каждой длины волны, чтобы выяснить, из чего состоит звезда. Обычно это не вызывает затруднений, однако ученые до сих пор пытаются понять спектр звезды Пшибыльского.

Читайте также:  Расширение вселенной непрерывное увеличение средних расстояний между далекими объектами

Источник

Время жизни звезды

Нас окружают звезды самого разного возраста. Солнце — сравнительно старая звезда, как и планеты, вращающиеся вокруг него. По оценкам геологов, возраст Земли — около 4,5 млрд. лет, возраст Солнца должен быть не меньшим. Возраст абсолютного большинства звезд нашей Галактики — такой же, как у Солнца, или больше. В то же время многие звезды образовались совсем недавно, а некоторые давно закончили свой жизненный путь. Процесс рождения и умирания звезд непрерывен.

Жизненный цикл Солнца

Массивные звезды эволюционируют намного быстрее, чем звезды малых масс. Звезда очень большой массы успевает пройти весь свой жизненный путь и стать сверхновой за тот период, которого самым легким звездам хватает лишь для того, чтобы прийти на главную последовательность. Соотношение возраста и отпущенного звезде времени жизни можно рассматривать как показатель молодости или старости звезды. Самые молодые звезды мы наблюдаем в областях звездообразования, близ ярких газовых туманностей. Они находятся на стадии образования или только что образовались из газовой среды, «проклюнулись» из непрозрачных околозвездных «коконов», на их поверхность продолжает падать газовое вещество из окружающего пространства. Эти активные процессы проявляются в переменности блеска молодых звезд. Особенно точно определяется возраст звездных скоплений. Звездное скопление — это группа звезд различной массы, которые сформировались практически одновременно из вещества с почти одинаковым содержанием химических элементов.

Сравнив диаграмму Герцшпрунга — Рассела звездного скопления с теоретической последовательностью, т.е. последовательностью, которую должны образовывать на этой диаграмме звезды разной массы, но одного возраста и химического состава, астрофизики могут оценить возраст скопления.

диаграмма Герцшпрунга — Рассела

У очень молодых звездных скоплений (с возрастом около 1 млн. лет) правая нижняя часть наиболее «населенной» последовательности диаграммы Герцшпрунга — Рассела проходит выше теоретической главной последовательности. Это результат того, что самые маломассивные звезды молодых скоплений еще не достигли эволюционного этапа главной последовательности и только приближаются к ней справа. У более старых скоплений (десятки миллионов лет) становится заметным загиб вправо верхнего конца главной последовательности. Масса звезд вдоль главной последовательности убывает сверху вниз. Самые массивные звезды рассматриваемых скоплений уже завершают эволюционную стадию главной последовательности и начинают уходить с нее вправо. Место этого загиба обычно называют точкой поворота главной последовательности. Чем старше скопление, тем дальше точка поворота сдвигается вправо вниз (в сторону меньшей светимости и более низкой температуры поверхности звезд). У самых старых шаровых скоплений (около 10 млрд. лет и больше) на главной последовательности вообще нет ярких горячих звезд. Теоретики предсказывают, что Солнце останется на главной последовательности еще примерно 5— 6 млрд. лет, и если в шаровых скоплениях звезды солнечного типа уже отсутствуют на главной последовательности, значит, возраст таких скоплений (и возраст населяющих их звезд) должен превышать 10 млрд. лет.

Источник

Как долго может прожить звезда?

Человеческая жизнь, по сравнению с жизнью звёзд очень коротка, даже всё время существования человеческой цивилизации является лишь мигом, для любой звезды. Поэтому человек не может проследить жизнь хотя бы одной звезды от начала до конца, поэтому астрофизики решили изучать звёзды, которые находятся на разных стадиях развития, что даёт возможность проследить весь жизненный цикл звезды, объединив полученные данные.

Как рождаются звёзды?

Жизнь звёзд начинается в гигантских газопылевых облаках, ими заполнена межзвёздная среда в галактике. Плотность этого облака очень маленькая, от 0.1 до 1 молекулы на см³. Состав межзвёздного газа в той или иной области галактики определяет химический состав звезды, которая из него сформируется. В обычной ситуации газопылевое облако не будет сжиматься и образовывать звёзды, для начала формирования звёзд облако должно находиться в состоянии гравитационной неустойчивости, это может быть спровоцировано столкновением облаков друг с другом или взрывом сверхновой звезды, произошедшим неподалёку. Это приводит к увеличению плотности в отдельных участках облака. В таких местах уплотнения газ быстро собирается в сгустки и под действием гравитации уплотняется, нагреваясь от сжатия. Вследствие коллапса и разогрева начинают происходить отдельные вспышки ядерного горения и шар из газа начинает светиться — образуется протозвезда.

Читайте также:  Количество душ во вселенной

С увеличением температуры и плотности в центре начинают стабильно протекать термоядерные реакции и протозвезда превращается в настоящую звезду. Процесс звездообразования относительно недолгий: самые большие звезды проходят эту стадию всего за несколько сотен тысяч лет.

Гравитационное равновесие

После образования звезда большую часть своей жизни находится в состоянии гравитационного равновесия (на главной последовательности). Если говорить по-простому: за счёт гравитации внешние слои звезды давят к её центру, а давление нагретых газов и излучения в недрах звезды — от центра. Их баланс поддерживает звезду в неизменном состоянии почти всю её жизнь.

Это будет продолжаться до тех пор, пока водород в ядре не превратится в Гелий, после чего термоядерные реакции замедляются, давление в ядре уменьшается и звезда начнёт сжиматься под действием гравитации. Звёзды, подобные нашему Солнцу, находятся на главной последовательности около 10 млрд лет. Что же происходит со звездой дальше? Это зависит от типа звезды.

Как умирает звезда?

Поскольку разные типы звёзд заканчивают свою жизнь по-разному и этих типов очень много, в дальнейшем мы не будем рассматривать все подвиды звёзд, а обратим внимание на 3 общие типа: звёзды с малой, средней и большой массами.

Звёзды с малой массой (0.2 — 0.5 масс Солнца) живут дольше и на главной последовательности находятся более 15 миллиардов лет. По теоретическим расчётам звёзды малой массы не станут красными гигантами, как это будет с Солнцем, они будут нагреваться и превратятся в голубые карлики.

Для звёзд со средней массой (до 1.5 массы Солнца) после стадии главной последовательности, которая длится в среднем около 10 миллиардов лет, наступает короткая стадия жизни в виде субгиганта или красного гиганта, в зависимости от массы звезды. В это время радиус звезды увеличивается, а температура снижается. Стадия гигантов продолжается всего несколько миллионов лет, после чего звезда сбросит свою внешнюю оболочку и останется только белый карлик, который будет остывать в течение десятков миллиардов лет. Кстати, наше Солнце перейдёт в стадию красного гиганта через 5 млрд лет.

Звёзды большой массы (около 8 масс Солнца и больше) становятся сверхгигантами достаточно быстро, состояние гравитационного равновесия продолжается от нескольких десятков до нескольких сотен миллионов лет, после чего они сбрасывают свою внешнюю оболочку, и превращаются в звёзды Вольфа-Райе, которые затем заканчивают свою жизнь взрывом сверхновой. Другие же звёзды взрываются как сверхновая типа II. В зависимости от массы остатка звезды, он становится или нейтронной звездой или чёрной дырой.

Также существуют звёзды, которые, по не выясненным пока причинам, являются исключением из вышеописанных правил. Так звезда Мафусаила, являясь сверхгигантом, существует уже около 13,5-13,8 млрд лет, что соизмеримо с возрастом всей Вселенной.

Подытожив, можно сказать, что обычно звёзды, способны жить до 20 млрд лет, если их масса невелика, но чем больше и ярче звезда, тем меньше она живёт и крупнейшие из них не проживают даже 100 млн лет.

Автор: Алексей Нимчук. Редакция: Фёдор Карасенко.

Ставьте палец вверх, чтобы видеть в своей ленте больше статей о космосе и науке!

Подписывайтесь на мой канал здесь, а также на мои каналы в телеграме и на youtube . Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос. Поддержать наш канал материально можно через patreon .

Источник

Adblock
detector