Меню

Самый далекий уголок вселенной

Насколько далека самая далекая галактика во Вселенной?

Вселенная — чертовски большое место. Когда мы смотрим на ночное небо, почти все, что видно невооруженному глазу, является частью нашей галактики: звездой, скоплением звезд, туманностью. За звездами Млечного Пути проглядывает, например, галактика Треугольника. Эти «островные миры» мы находим повсюду во Вселенной, куда ни глянь, даже в самых темных и пустых клочках пространства, если только сумеем собрать достаточно света, чтобы заглянуть достаточно глубоко.

Большинство этих галактик настолько далеки, что даже фотону, летящему на скорости света, потребуются миллионы или миллиарды лет, чтобы преодолеть межгалактическое пространство. Когда-то он был испущен поверхностью далекой звезды, а теперь он, наконец, добрался до нас. И хотя скорость в 299 792 458 метров в секунду кажется невероятной, тот факт, что мы прошли всего 13,8 миллиарда лет со времен Большого Взрыва, означает, что расстояние, которое преодолел свет, все же конечно.

Вы, наверное, думаете, что самая далекая галактика от нас должна быть не дальше, чем в 13,8 миллиарда световых лет от нас, но это было бы ошибкой. Видите ли, кроме того, что свет движется с конечной скоростью через Вселенную, есть и другой, менее очевидный факт: ткань самой Вселенной расширяется с течением времени.

Галактика EGS8p7 в настоящее время является рекордсменом по удаленности. С измеренным красным смещением в 8,63, наша реконструкция Вселенной подсказывает нам, что свету этой галактики потребовалось 13,24 миллиарда лет, чтобы добраться до нас. Еще немного математики, и мы обнаружим, что видим этот объект, когда Вселенной было всего 573 миллиона лет, всего 4% от ее текущего возраста.

Зеркало Хаббла по сравнению с зеркалом Джеймса Вебба

Но не думайте, что эта галактика самая далекая из самых далеких галактик, которые мы когда-либо увидим. Мы видим галактики на таком расстоянии настолько, насколько нам позволяет наше оборудование и Вселенная: чем меньше нейтрального газа, чем больше и ярче галактика, чем чувствительнее наш инструмент, тем дальше мы видим. Через несколько лет космический телескоп Джеймса Вебба сможет заглянуть еще дальше, поскольку будет способен улавливать свет большей длины волны (и, следовательно, с большим красным смещением), сможет видеть свет, который не блокируется нейтральным газом, сможет видеть более тусклые галактики, чем наши современные телескопы (Хаббл, Спитцер, Кек).

В теории самые первые галактики должны появиться с красным смещением в 15-20.

Источник

Найдена самая далекая и древняя галактика во Вселенной

Команда астрономов использовала телескоп Keck I, чтобы измерить расстояние до древней галактики. Ученые пришли к выводу, что целевая галактика GN-z11, не только самая старая, но и самая далекая.

Галактика GN-z11 настолько далека, что определяет саму границу наблюдаемой Вселенной. Команда ученых надеется, что новое исследование прольет свет на период космологической истории, когда Вселенной было всего несколько сотен миллионов лет.

Профессор Нобунари Касикава с факультета астрономии Токийского университета долго искал самую далекую из галактик, которая доступна для наблюдений, чтобы узнать, как и когда она появилась.

«Судя по предыдущим исследованиям, галактика GN-z11 кажется самой далекой от нас обнаруживаемой галактикой. Она находится на расстоянии 13,4 млрд световых лет или 134 нониллиона километров (это 134 с 30 нулями)», — объясняет Кашикава. — Но измерить и проверить такое расстояние — непростая задача».

Кашикава и его команда измерили красное смещение GN-z11. Напомним, космологическое (метагалактическое) красное смещение — наблюдаемое для всех далёких источников (галактики, квазары) понижение частот излучения, объясняемое как динамическое удаление этих источников друг от друга и, в частности, от Млечного Пути.

Чтоб изучить GN-z11, ученые использовали наземный спектрограф, прибор для измерения эмиссионных линий, названный MOSFIRE, который установлен на телескопе Keck I на Гавайях.

Напомним, эмиссионный спектр, спектр излучения, спектр испускания — это относительная интенсивность электромагнитного излучения объекта исследования по шкале частот. Обычно изучается в инфракрасном, видимом и ультрафиолетовом диапазоне от сильно нагретого вещества.

MOSFIRE детально зафиксировал эмиссионные линии GN-z11, что позволило команде сделать гораздо более точную оценку расстояния до галактики. Как отмечает Кашикава, при работе с расстояниями в этих масштабах неразумно использовать наши знакомые единицы километров или даже кратные им. Вместо этого астрономы используют другое значение — число красного смещения, обозначаемое z.

Кашикава и его команда повысили точность значения z галактики в 100 раз. Если последующие наблюдения подтвердят это, астрономы могут с уверенностью сказать, что GN-z11 — самая дальняя галактика, когда-либо обнаруженная во Вселенной.

Источник

Где находится самая дальняя точка Вселенной?

Наверняка вы не раз задумывались, глядя на ночное небо: «Что там? Как далеко всё это простирается?». Вы не одиноки в своём любопытстве. Мало того, вы в очень хорошей компании. Люди задавались вопросом, что там, за горизонтом, в течение всей истории существования своей цивилизации. И сегодня наука пытается ответить уже на более серьёзный вопрос: есть ли вообще край у Вселенной?

Читайте также:  Момент большого взрыва вещество вселенной

Здесь живут львы

Самые древние географические карты, дошедшие до наших дней, датируются шестым веком до нашей эры. Нельзя сказать, что на них помещалась сколько-нибудь значительная территория. Земля выглядела плоской, как если бы её срисовывали, находясь на высокой горе, находящейся в центре. Одним из первых о том, что наша планета на самом деле представляет собой сферу, приблизительно в 240 году до н.э. предположил древнегреческий учёный Эратосфен. Наблюдая за полуденным Солнцем, он вычислил окружность земли, ошибившись в итоге всего на 15%.

Тем не менее, в течение ещё сотен лет после него карты были «плоскими», а картографы были центрами этих миров, будь то Европа, Азия или даже Китай. По краям таких карт часто были примечания, вроде совершенно замечательного «здесь живут львы». Эти надписи обозначали неизведанные земли. Исследователи обменивались знаниями и «обнаруживали» места, уже почему-то заселённые людьми. Картина мира постепенно расширялась, пополняясь новыми красками. Карты приобрели окончательный вид в 20- годах позапрошлого века, с открытием Антарктиды. И неожиданно для всех краем карты оказалось небо!

Одна Вселенная – одна галактика

В 30-х годах того же века человечество обнаружило, что звёзды находятся гораздо дальше, чем планеты. Выяснилось это, когда астрономы измерили, насколько по-разному различные небесные тела перемещаются относительно своего фона — этот феномен называется «параллакс». Край карты теперь переместился за пределы Солнечной системы — дальше, вглубь галактики. И к началу 20 века человечество искренне считало, что вся Вселенная помещается в Млечный путь.

Но тут перед учёными встал вопрос: « Если одна звезда не такая яркая, как другая — она что, дальше? Или просто меньше? ». На самой заре 20 века астроном Генриетта Суон Ливитт определила, что класс звёзд под названием Цефеиды пульсирует — становится то ярче, то тусклее. При этом звёзды, пульсирующие с одинаковой периодичностью, имеют одинаковую яркость. Если две цефеиды пульсируют синхронно, и одна из них тусклее другой, это значит, что одна из них ближе, а вторая — дальше. И так как расстояние до некоторых из этих объектов уже было известно, учёным удалось создать космический «мерный шест», как у геодезистов.

В 1925 году Эдвин Хаббл наблюдал за яркостью переменных звёзд в мутном пятне под названием Андромеда, и некоторые из них оказались совсем не такими яркими, как на то намекала ритмичность пульсации. Астроном вдруг осознал, что эти звёзды находятся слишком далеко, чтобы находиться внутри Млечного пути. Андромеда оказалась другой галактикой! Сейчас мы знаем, что свет этой «богини» — это самое дальнее из того, что мы можем увидеть невооружённым взглядом на ночном небе.

13 миллиардов световых лет?

Используя более зоркие «глаза», вроде того космического телескопа, что был назван в честь Эдвина Хаббла, мы увидели потрясающие картины, на которых каждая крошечная точечка была целой галактикой.

Самая дальняя из них находилась на расстоянии в 13 миллиардов световых лет, и свет от неё — это самое древнее, что нам доводилось видеть. Глядя на неё, мы смотрим на то, как она выглядела, когда Вселенной было всего 400 миллионов лет. Ни Солнца, ни Земли тогда ещё не существовало и в помине.

Надо сказать, что мы видим эти дальние объекты не там, где они находятся конкретно в этот момент времени. Некоторые звёзды, в том числе и наше Солнце, излучают свет согласно определённым шаблонам, которые зависят от их атомного состава. Они называются «спектры поглощения» и являются своеобразными световыми отпечатками. Но если мы видим образцы на более длинных и красных длинах волн, чем ожидаем, то это говорит о том, что объект удаляется от нас, и его свет растягивается расширяющейся вселенной. Астрономы называют этот феномен почти по коммунистически — «красным смещением».

Итак, за то время, что свет доходит до нас от отдалённой галактики, она улетает от нас ещё дальше. Поэтому мы видим её гораздо более молодой и близкой, чем есть на самом деле. Представьте, что друг послал вам на электронную почту письмо, в котором написал, что едет в поезде и проезжает мост на границе вашего города. Но к тому времени, когда вы прочитаете это послание, он уже будет далеко от этого моста. Так вот, то космическое явление, которое мы объясняем, очень напоминает описанную ситуацию. Однако физика больших расстояний имеет свои странные особенности, и мы непременно должны учитывать их.

Читайте также:  Сан лайт ладони вселенной

Что за пределом видимой Вселенной?

Свет, покинув галактику, находящуюся на расстоянии 13 миллиардов световых лет, доходит до нас, когда до неё уже 46 миллиардов. И чем дальше она расположена, тем быстрее летит прочь. Это значит, что где-то далеко-далеко есть некий предел, за которым космические объекты движутся быстрее скорости света — потому что само пространство расширяется с упомянутой скоростью. Свет, который испускают такие объекты, будет удаляться от нас, двигаясь в нашем же направлении! И мы никогда не сможем увидеть его.

Это и есть предел наблюдаемого нами космоса. Учёные почти на 100% уверены, что за ним находятся другие его части. Никто точно не знает, насколько велика Вселенная. Кто-то считает, что она раз в 250 больше наблюдаемой, другие рассчитали, что это 1222000 мегапарсек, что очень много, очень гипотетично, и очень нелепо. Третьи говорят, что никакого края нет как такового. Одна из теорий гласит, что ткань Вселенной может быть свёрнута в тор — это что-то вроде гигантского пончика с дырой внутри. Если она верна, то у Вселенной нет не только края, но и начала, и конца.

Так что пока мы не можем ответить на вопрос, где находится самая дальняя точка Вселенной. Однако нами движет то же самое любопытство, которое тысячи лет назад вдохновляло на открытия первых

составителей географических карт. Берегите это чувство, пытайтесь открывать для себя новое. Но будьте осмотрительны… Где-то там могут жить львы.

Спасибо, что читаете нас! Если понравился материал, не забудьте поставить лайк и подписаться на канал!

Возможно, вас заинтересуют другие наши материалы:

Источник

Квазары, гамма-всплески и скопления галактик: как изучают самые далекие космические объекты

Новая рекордно далекая галактика GN-z11 явственно показывает, что астрономы не стоят на месте и все дальше отодвигают границу неизвестного нам космоса. Рассказываем о самых далеких объектах космоса и как их изучают.

Квазары

Первый квазар, 3C 48, был обнаружен в конце 1950-х годов Алланом Сэндиджем и Томасом Метьюзом во время радиообзора неба. В 1963 году было известно уже 5 квазаров. Новый тип объектов объединяли некоторые аномальные свойства, которые на тот момент не могли быть объяснены.

Они испускали большое количество излучения широкого спектра, но большая их часть оптически не обнаруживалась, хотя в некоторых случаях удавалось идентифицировать слабый и точечный объект, похожий на далекую звезду.

Спектральные линии, которые идентифицируют химические элементы, из которых состоит объект, тоже были чрезвычайно странными и не поддавались разложению на спектры всех известных на тот момент элементов и их различных ионизированных состояний.

Самые далекие квазары благодаря своей гигантской светимости, превосходящей в сотни раз светимость обычных галактик, регистрируются с помощью радиотелескопов на расстоянии более 12 млрд световых лет.

Самый удаленный рентгеновский квазар, открытый СРГ и подтвержденный учеными из КФУ, находится на z=4,23. Статью об исследовании первой группы далеких квазаров СРГ на телескопе РТТ-150 недавно опубликовали в ведущем научном издании — «Письмах в астрономический журнал».

Пока обнаружили не более тысячи далеких квазаров. Последний — J0313-1806 — открыли на красном смещении 7,6. Несколько лет назад его включили в список кандидатов — по данным нескольких крупных обзоров. И вот теперь подтвердили.

Масса — 1,6 миллиарда солнечной. Свет от него шел к нам 13,1 миллиардов лет. Это значит, что мы получили снимок объекта, существовавшего спустя всего 670 миллионов лет после Большого взрыва. Получается, это еще и самый молодой квазар из известных нам. В его родной галактике наблюдали активное звездообразование.

Гамма-всплески

Из космологической природы гамма-всплесков ясно, что они должны иметь огромную энергию. Причем эта энергия выделяется за очень короткое время.

Наличие релятивистских джетов означает, что мы видим малую долю всех происходящих во Вселенной всплесков. Оценка их частоты составляет порядка одного всплеска на галактику раз в 100 000 лет.

События, порождающие гамма-всплески, настолько мощные, что иногда их можно наблюдать невооруженным глазом, хотя они происходят на расстоянии в миллиарды световых лет от Земли.

Механизм, в результате которого за столь короткое время в малом объёме выделяется столько энергии, до сих пор не вполне ясен. Наиболее вероятно, что он различен в случае коротких и длинных гамма-всплесков. На сегодняшний день различают два основных подвида ГВ: длинные и короткие, имеющие существенные различия в спектрах и наблюдательных проявлениях.

Так, длинные гамма-всплески иногда сопровождаются взрывом сверхновой звезды, а короткие — никогда. Есть и две основные модели, объясняющие эти два типа катаклизмов.

Эти события происходят в далеких галактиках на красном смещении от двух до четырех и больше. Колоссальное количество энергии выделяется за сто секунд. Согласно рабочей гипотезе, это вспышки гиперновых звезд массой в тысячу и больше солнечных. В нашей галактике таких массивных звезд нет. Вспышки звезд поменьше, 10–30 масс Солнца, называются сверхновыми. За тысячу лет истории человечества в нашей галактике вспышки сверхновых происходили лишь несколько раз. А гамма-всплески современные орбитальные телескопы регистрируют практически каждый день. Мы тоже около десяти лет наблюдали оптическое послесвечение этих событий с помощью телескопа РТТ-150 и опубликовали около сотни астрономических телеграмм совместно с российскими учеными из ИКИ РАН и турецкими коллегами.

Читайте также:  Тоже является вселенной когда написана

Ильфан Бикмаев, профессор Казанского федерального университета

Скопление галактик

Интересную информацию о межгалактическом газе в скоплениях галактик дали радионаблюдения в метровом диапазоне длин волн. Они показали наличие в скоплениях галактик радиоисточников неправильной формы, обладающих компактной «головой» и длинным «хвостом».

Эти данные легко интерпретируются, если предположить, что радиоисточник — облако релятивистских электронов, излучающих синхротронным механизмом в магнитном поле, движется относительно межгалактического газа.

Наличие скорости приводит к тому, что лобовое давление сжимает радиоисточник с одной стороны («голова»), а уменьшение давления с другой стороны приводит к образованию протяженного «хвоста». В центральной части богатых световых галактик часто находятся мощные радиогалактики, излучение которых особенно интенсивно в метровом диапазоне длин волн.

В сантиметровом диапазоне излучение радиогалактик очень слабо. Здесь, однако, может проявить себя излучение компактных радиоисточников в ядрах галактик.

В скоплении между галактиками находится газ, разогретый до одного-двух миллионов градусов. Он излучает в рентгене и доступен для наблюдения «Спектром-РГ». Откуда этот газ, пока неизвестно. Возможно, притекает из галактик, когда там вспыхивают сверхновые, что подтверждают линии железа в рентгеновском спектре межгалактического газа. Этот тяжелый элемент нарабатывается долго в недрах звезд.

Ильфан Бикмаев, профессор Казанского федерального университета

Согласно астрономическим наблюдениям и теоретическим расчетам, видимое вещество, то есть звезды, газ и пыль — это всего лишь несколько процентов массы Вселенной. Четверть приходится на темную материю, остальное, почти 70%, принадлежит еще более таинственной субстанции — темной энергии.

Ради разгадки этих тайн ученые продвигаются все дальше в пространстве-времени, к исходной точке, с которой все началось.

Самая далекая галактика

Ученые открыли галактику GN-z11: это самый далекий объект в космосе. Как показывает открытие, современные техники наблюдения вполне позволяют надежно фиксировать спектральные линии даже столь редких в космосе элементов, как кислород и углерод у исключительно ранней галактики.

Это важно, потому что, рассматривая такие рекордно далекие объекты, мы погружаемся в далекое прошлое Вселенной и видим ее такой, какой она была в своей ранней молодости. Так, в случае GN-z11 мы наблюдаем свет из нашей Вселенной, когда ей было 420 миллионов лет — то есть меньше 5% ее текущего возраста.

Оказалось, что уже в эту раннюю эпоху существовали молодые, но достаточно массивные галактики, состоящие из нескольких миллионов звезд. Задача поиска еще более молодых (а если повезет, то самых молодых во Вселенной) галактик ляжет на плечи телескопа «Джеймс Уэбб», о запуске которого мы еще поговорим.

Как изучают самые далекие объекты?

В 2020 году был запущен канадский радиотелескоп CHIME, который совместно с американским радиотелескопом STARE2 установил точное происхождение всплеска FRB 200428 — он идет от уже известного магнитара, который находится в нашем Млечном пути.

Это открытие позволит не только лучше изучить строение этой удивительной подгруппы нейтронных звезд, но и найти еще не открытые магнитары — на сегодняшний день астрономам известно всего около 30 подобных объектов.

Запущенная в середине 2019 года флагманская обсерватория российской и германской астрономии «Спектр-РГ» завершила в середине июня первый, а в середине декабря — второй обзор неба в жестком рентгеновском диапазоне.

Данные каждого нового обзора складываются с предыдущими и позволяют увидеть все более тусклые объекты. Всего с момента запуска обсерватория обнаружила более тысячи новых источников рентгеновского излучения, практически удвоив их общее число.

В 1977 году он отправился в путешествие к внешним планетам солнечной системы. Космический корабль исследовал 4 планеты и стал единственным человеческим устройством, посетившим Нептун и Уран — с тех пор никто не мог добраться до этих планет.

Он не направляется к какой-либо конкретной звезде, но должен пролететь примерно в 4 световых годах от Сириуса.

«Новые горизонты» — единственный удаленный космический аппарат, запущенный в 2006 году, облетевший Плутон в 2015 году и MU69 в начале 2019 года.

В настоящее время (февраль 2021 года) находится примерно в 50 а. е. от Земли. Космический корабль «Новые горизонты» покинул гравитационное поле Земли с самой высокой скоростью в истории, а также стал самым быстродвижущимся искусственным телом вокруг Земли.

Источник

Adblock
detector