Задачи с решениями

Принимая, что Солнце излучает как абсолютно черное тело с температурой поверхности , оцените среднюю температуру земной поверхности в предположении, что Земля также является абсолютно черным телом, а роль тепловых процессов внутри Земли пренебрежимо мала. Угловой диаметр Солнца, видимый с Земли, примите равным .
В пренебрежении процессами, идущими в недрах Земли, тепловой баланс Земли определяется поглощением энергии солнечного излучения и собственным излучением в пространство. Полный поток энергии , излучаемой Солнцем по всем направлениям, в соответствии с законом Стефана–Больцмана равен
где – постоянная Стефана–Больцмана, – радиус Солнца. Часть полного потока падает на поверхность Земли и поглощается:
Здесь – радиус Земли, – расстояние от Земли до Солнца.
Такой же поток энергии Земля должна излучать в пространство, иначе ее температура не будет оставаться постоянной. Приравнивая поток излучаемой Землей энергии и поглощаемый ею поток энергии , получим:
Из этого выражения видно, что для определения нужно знать только температуру поверхности Солнца и его угловой диаметр . Числовой расчет дает значение . Этот результат весьма близок к реальному значению средней температуры поверхности Земли.
Источник
Считая солнце абсолютно черным телом определить температуру земли
2018-09-08
Принимая, что Солнце излучает как черное тело, вычислить его энергетическую светимость $M_
Солнечная постоянная $C$, по определению, есть величина, равная:
где $W$ — энергия, излучаемая Солнцем за время $t$; $S = 4 \pi r^<2>$ — площадь сферической поверхности, радиуса $r$ который равен среднему расстоянию Земли от Солнца.
Энергию, излучаемую Солнцем за время $t$ выразим следующим образом
где $R_
Подставляя выражение (2) в формулу (1) получаем
Выразим площадь поверхности Солнца $S_<0>$ через диаметр $d$ по формуле: $S_ <0>= \pi d^<2>$. Тогда,
Обратимся к рисунку. Так как угол $\theta$ мал, то можно записать, что $d = r \theta$, где угол $\theta$ выражаем в радианах. С учетом этого формула (3) принимает вид:
Отсюда определяем излучательность Солнца
Температуру поверхности Солнца определим воспользовавшись законом Стефана- Больцмана, полагая, что Солнце излучает как абсолютно черное тело.
Согласно закону Стефана — Больцмана излучательность абсолютно черного тела
где $\sigma$ — постоянная Стефана — Больцмана ($\sigma = 5,67 \cdot 10^ <-8>\frac<Вт> <м^<2>\cdot К^ <4>>$ ). Отсюда
Подставляя в это выражение значение $\sigma$ и найденное выше значение $R_
Источник
Считая солнце абсолютно черным телом определить температуру земли
2018-11-09
Экспериментально установлены следующие факты:
1) угловой диаметр Солнца, наблюдаемый с Земли, составляет $\alpha = 32^< \prime>$;
2) солнечная постоянная, т. е. количество лучистой энергии, падающей каждую секунду на $1 см^<2>$ поверхности, перпендикулярной к прямой, соединяющей Землю и Солнце на расстоянии, равном расстоянию между Землей и Солнцем, составляет
$S = 0,135 лм \cdot см^ <-2>\cdot с^<-1>$;
3) постоянная Стефана — Больцмана равна
$\sigma = 5,67 \cdot 10^ <-12>лм \cdot см^ <-2>\cdot с^ <-1>\cdot К^<-4>$;
4) солнечное излучение практически соответствует излучению абсолютно черного тела.
Пользуясь вышеуказанными данными, определить:
а) температуру Земли, считая, что эта температура постоянна во времени и что Земля является абсолютно черным телом и идеальным проводником тепла (последнее предположение позволяет считать, что температура всех точек поверхности Земли одинакова);
б) температуру верхних слоев Солнца.
Примечание. Полная энергия, излучаемая за 1 с с $1 см^<2>$ поверхности абсолютно черного тела, определяется законом Стефана — Больцмана и составляет $\sigma T^<4>$, где $\sigma$ — постоянная Стефана — Больцмана, а $T$ — абсолютная температура тела.
Сначала определим температуру Земли $T_<з>$. В состоянии равновесия тело излучает столько же энергии, сколько поглощает. Поскольку вся поверхность Земли, согласно условию задачи, излучает одинаково, то энергия, потерянная Землей в 1 с в виде излучения, равна
$E_ <изл>= 4 \pi R_<з>^ <2>\sigma T_<з>^<4>$, где $R_<з>$ — радиус Земли.
Энергия, поглощенная в течение 1 с, равна произведению площади сечения Земли по большому кругу на солнечную постоянную:
Поскольку $E_ <изл>= E_<погл>$, получаем
Теперь определим температуру Солнца. Энергия, излучаемая всей поверхностью Солнца за 1 с равна
где $R_
где $R_<орб>$ — радиус орбиты Земли.
Можно считать, что $E_
Так как $R_
Источник
Примеры решения задач. Задача 15. Исследование спектра излучения Солнца показало, что максимум спектральной плотности энергетической светимости соответствует длине волны 0,5 мкм
Задача 15. Исследование спектра излучения Солнца показало, что максимум спектральной плотности энергетической светимости соответствует длине волны 0,5 мкм. Определить энергетическую освещенность поверхности Земли, принимая Солнце за абсолютно черное тело.
Дано: lmax = 0,5 мкм = 5 × 10 –7 м rc = 6,96 × 10 8 м r = 1,5 × 10 11 м s = 5,67×10 –8 Вт/(м 2 ×К 4 ) | Решение Энергетическая освещенность поверхности Земли равна потоку солнечной энергии, падающей на единицу поверхности Земли. Будем считать Солнце сферой, площадь поверхности которой |
Еэ – ? | S = 4 p rc 2 . |
Поток энергии, излучаемой Солнцем,
Фс = Rэ × 4 p R 2 ,
где Rэ = s . T 4 c, так как, по условию задачи, Солнце – абсолютно черное тело.
Фс = s . T 4 c × 4 p R 2 .
Температуру поверхности Солнца Тс определим из закона Вина
Тс = b΄/ lmax .
Поток солнечной энергии распространяется от Солнца по всем направлениям в пределах 4p радиан (в дальнейшем будем считать Солнце точечным источником). На единицу любой поверхности находящейся на расстоянии r от Солнца, приходится энергия, равная Фс / (4p . r 2 ) .
Задача 16. Внутри солнечной системы на том же расстоянии от Солнца, как и Земля, находится частица сферической формы. Полагая Солнце абсолютно черным телом с температурой Тс = 6000 К и что температура частицы во всех ее точках одинакова, определить ее температуру, считая частицу серым телом.
Дано: r = 1,5 . 10 11 м Тс = 6000 К Rс = 6,96 . 10 8 м l= 500 нм | Решение Частица – серое тело, следовательно, ее поглощательная способность одинакова для всех длин волн и при данной температуре частиц аl,Т = аT . Так как температура частицы постоянна во всех ее точках, соблюдается условие равновесия: |
Тr – ? | мощность излучения, поглощаемого частицей, равна |
мощности излучения, испускаемой ею
Определим Nпогл, исходя из объяснения решения предыдущей задачи. Мощность солнечного излучения, падающего на единицу поверхности частицы, равна
Если учесть, что к Солнцу обращена половина поверхности частицы, то на поверхность частицы падает мощность солнечного излучения, равная
,
где Rc – радиус частицы.
Частица – это серое тело, поэтому она поглощает не всю энергию, а только часть ее.
.
Определим энергию, излучаемую частицей
.
Приравнивая правые части последних соотношений, получим
Задача 17. Определить, за какое время зачерненный металлический шар диаметром D остынет с температуры T1 до температуры T2. Теплоемкость шара С. Остывание идет только за счет теплового излучения.
Теплоемкость твердого тела определяется формулой
,
где dU – это изменение внутренней энергии, так как при нагревании происходит незначительное изменение объема тела.
Вследствие теплового излучения происходит убыль внутренней энергии шара, равная d U = – C d T .
С другой стороны, энергия, излучаемая нагретым шаром за время dt, равна dE = s T 4 × 4p R 2 ×d t .
Приравнивая правые части последних соотношений, получим
– C d T = s T 4 × 4p R 2 ×d t.
Проводим разделение переменных и решаем полученные интегралы
Источник
§ 120. Солнце
Основные характеристики Солнца. Солнце — лишь одна из бесчисленного множества звезд, существующих в природе. Благодаря близости Земли к Солнцу мы имеем возможность изучать происходящие на нем процессы и по ним судить об аналогичных процессах в звездах, непосредственно не видимых из-за колоссального их удаления.
Шарообразное Солнце представляется нам светящимся диском. Видимая поверхность Солнца называется фотосферой, ее радиус считается радиусом Солнца. На среднем расстоянии от Солнца до Земли (а0 = 1 а. е.), угол, под которым виден радиус фотосферы θ = 16′, поэтому линейный радиус Солнца R = а0 • sin θ = 1,5 • 10 8 км • 0,00465 = 700 000 км, что в 109 раз превышает радиус Земли.
Масса Солнца определяется по движению Земли вокруг Солнца и третьему обобщенному закону Кеплера, согласно которому (если пренебречь массой планеты по сравнению с массой Солнца М)
В этой формуле а = а0, G = 6,67 • 10 -11 м 3 /кг • с 2 — гравитационная постоянная, Т = Т0 = 365,25 сут. — период обращения Земли вокруг Солнца. Так как 1 сут. = 1440 мин = 86 400 с, то Т0 = 365,25 • 86 400 = 3,2 • 10 7 с.
Ускорение свободного падения на поверхности Солнца в 28 раз больше, чем на поверхности Земли, и равно 274 м/с 2 .
На фотографических снимках Солнца часто видны темные пятна, возникающие в его фотосфере. Если в течение нескольких дней следить за пятнами, то можно заметить их перемещение, что указывает на вращение Солнца вокруг оси. Такие наблюдения показали, что Солнце вращается не как твердое тело. Период его обращения вокруг оси вблизи экватора составляет 25 сут., а вблизи полюса — 30 сут. Линейная скорость вращения Солнца на экваторе составляет 2 км/с.
Измерение освещенности, которую создает Солнце на Земле, показало, что на земную поверхность площадью в 1 м 2 , расположенную перпендикулярно к солнечным лучам, ежесекундно поступает от Солнца энергия, равная 1370 Дж. Эта величина получила название солнечной постоянной E = 1,37 кВт/м 2 . По ней нетрудно рассчитать светимость Солнца L
, или мощность солнечного излучения — энергию, излучаемую Солнцем за 1 с со всей его поверхности. Для этого достаточно умножить солнечную постоянную на площадь поверхности сферы, в центре которой находится Солнце, радиус которой равен расстоянию от Земли до Солнца а0 = 1,5 • 10 11 м. Так как площадь поверхности сферы радиусом а0 равна S = 4πR 2 , где π = 3,14, то светимость Солнца
L = SE
= 4 • 3,14 (1,5 • 10 11 м) 2 • 1,37 • 10 3 Вт/м 2 = 4 • 10 26 Вт.
На долю Земли приходится всего лишь одна двухсотмиллиардная доля энергии, излучаемой Солнцем, но и ее достаточно для расцвета и многообразия жизни на нашей планете.
Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Солнце является источником излучения различных длин волн — от длинноволнового радио- до коротковолнового рентгеновского и гамма-излучения. На рисунке XIII цветной вклейки показан наблюдаемый спектр Солнца в видимом диапазоне длин волн, полученный с помощью спектрографа. На нем мы видим, что на фоне непрерывного спектра (цветная радуга) видны линии поглощения различных химических элементов.
По наличию спектральных линий астрономы определяют химический состав Солнца. Оказалось, что Солнце почти на 71% состоит из водорода, 27% составляет гелий, на остальные химические элементы приходится около 2% массы.
Астрономы предполагают, что излучение Солнца близко по своим характеристикам к излучению абсолютно черного тела, законы излучения которого хорошо известны.
Согласно закону Вина длина волны, на которую приходится максимум излучения нагретого тела λmах, связана с температурой Т формулой
Максимум излучения Солнца приходится на длину волны λmах = 4,8 • 10 -7 м, следовательно, температура Солнца должна быть
Другой метод оценки температуры основан на законе Стефана — Больцмана, который гласит: мощность излучения i с квадратного метра поверхности абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры Т, т. е.
i = σТ 4 Вт/м 2 , (16.2)
где σ = 5,67 • 10 -8 Вт/(м 2 • К) — постоянная величина. Так как площадь солнечной поверхности S = 4πR 2 , то светимость Солнца
L = iS = σТ 4 πR 2
= 4 • 10 26 Вт. (16.3)
Отсюда следует, что температура солнечной фотосферы Подставляя в эту формулу указанные выше значения, получим, что T
= 5800 К, что мало отличается от результата, полученного по закону Вина. Обычно среднюю температуру солнечной фотосферы считают близкой к 6000 К.
Строение солнечной атмосферы. Все виды излучений, которые мы воспринимаем от Солнца, образуются в его самых верхних слоях, в атмосфере. Самый глубокий и плотный слой атмосферы — фотосфера — имеет толщину около 200 км, плотность вещества в ней составляет 10 -5 кг/м 3 , что значительно меньше плотности земной атмосферы. Несмотря на малое значение толщины и плотности, фотосфера непрозрачна для всех видов излучений, образующихся в более глубоких слоях Солнца, поэтому мы не можем заглянуть в его подфотосферные слои.
Источник